MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufr0 Structured version   Visualization version   GIF version

Theorem frgrregorufr0 30304
Description: In a friendship graph there are either no vertices having degree 𝐾, or all vertices have degree 𝐾 for any (nonnegative integer) 𝐾, unless there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrregorufr0.v 𝑉 = (Vtx‘𝐺)
frgrregorufr0.e 𝐸 = (Edg‘𝐺)
frgrregorufr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrregorufr0 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝑣,𝐷,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤   𝑣,𝐾,𝑤   𝑣,𝑉,𝑤
Allowed substitution hint:   𝐸(𝑤)

Proof of Theorem frgrregorufr0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrregorufr0.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrregorufr0.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 fveqeq2 6831 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑦) = 𝐾))
43cbvrabv 3405 . . 3 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑦𝑉 ∣ (𝐷𝑦) = 𝐾}
5 eqid 2731 . . 3 (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
61, 2, 4, 5frgrwopreg 30303 . 2 (𝐺 ∈ FriendGraph → (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)))
7 frgrregorufr0.e . . . . . . 7 𝐸 = (Edg‘𝐺)
81, 2, 4, 5, 7frgrwopreg1 30298 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
983mix3d 1339 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
109expcom 413 . . . 4 ((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
11 fveqeq2 6831 . . . . . . . 8 (𝑥 = 𝑣 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑣) = 𝐾))
1211cbvrabv 3405 . . . . . . 7 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾}
1312eqeq1i 2736 . . . . . 6 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅)
14 rabeq0 4335 . . . . . 6 ({𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
1513, 14bitri 275 . . . . 5 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
16 neqne 2936 . . . . . . . 8 (¬ (𝐷𝑣) = 𝐾 → (𝐷𝑣) ≠ 𝐾)
1716ralimi 3069 . . . . . . 7 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾)
18173mix2d 1338 . . . . . 6 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918a1d 25 . . . . 5 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2015, 19sylbi 217 . . . 4 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2110, 20jaoi 857 . . 3 (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
221, 2, 4, 5, 7frgrwopreg2 30299 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
23223mix3d 1339 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2423expcom 413 . . . 4 ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
25 difrab0eq 4417 . . . . 5 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ ↔ 𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
2612eqeq2i 2744 . . . . . . 7 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ 𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾})
27 rabid2 3428 . . . . . . 7 (𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
2826, 27bitri 275 . . . . . 6 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
29 3mix1 1331 . . . . . . 7 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
3029a1d 25 . . . . . 6 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3128, 30sylbi 217 . . . . 5 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3225, 31sylbi 217 . . . 4 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3324, 32jaoi 857 . . 3 (((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3421, 33jaoi 857 . 2 ((((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
356, 34mpcom 38 1 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cdif 3894  c0 4280  {csn 4573  {cpr 4575  cfv 6481  1c1 11007  chash 14237  Vtxcvtx 28974  Edgcedg 29025  VtxDegcvtxdg 29444   FriendGraph cfrgr 30238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-xadd 13012  df-fz 13408  df-hash 14238  df-edg 29026  df-uhgr 29036  df-ushgr 29037  df-upgr 29060  df-umgr 29061  df-uspgr 29128  df-usgr 29129  df-nbgr 29311  df-vtxdg 29445  df-frgr 30239
This theorem is referenced by:  frgrregorufr  30305
  Copyright terms: Public domain W3C validator