MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufr0 Structured version   Visualization version   GIF version

Theorem frgrregorufr0 30343
Description: In a friendship graph there are either no vertices having degree 𝐾, or all vertices have degree 𝐾 for any (nonnegative integer) 𝐾, unless there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrregorufr0.v 𝑉 = (Vtx‘𝐺)
frgrregorufr0.e 𝐸 = (Edg‘𝐺)
frgrregorufr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrregorufr0 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝑣,𝐷,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤   𝑣,𝐾,𝑤   𝑣,𝑉,𝑤
Allowed substitution hint:   𝐸(𝑤)

Proof of Theorem frgrregorufr0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrregorufr0.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrregorufr0.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 fveqeq2 6915 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑦) = 𝐾))
43cbvrabv 3447 . . 3 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑦𝑉 ∣ (𝐷𝑦) = 𝐾}
5 eqid 2737 . . 3 (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
61, 2, 4, 5frgrwopreg 30342 . 2 (𝐺 ∈ FriendGraph → (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)))
7 frgrregorufr0.e . . . . . . 7 𝐸 = (Edg‘𝐺)
81, 2, 4, 5, 7frgrwopreg1 30337 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
983mix3d 1339 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
109expcom 413 . . . 4 ((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
11 fveqeq2 6915 . . . . . . . 8 (𝑥 = 𝑣 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑣) = 𝐾))
1211cbvrabv 3447 . . . . . . 7 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾}
1312eqeq1i 2742 . . . . . 6 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅)
14 rabeq0 4388 . . . . . 6 ({𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
1513, 14bitri 275 . . . . 5 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
16 neqne 2948 . . . . . . . 8 (¬ (𝐷𝑣) = 𝐾 → (𝐷𝑣) ≠ 𝐾)
1716ralimi 3083 . . . . . . 7 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾)
18173mix2d 1338 . . . . . 6 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918a1d 25 . . . . 5 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2015, 19sylbi 217 . . . 4 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2110, 20jaoi 858 . . 3 (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
221, 2, 4, 5, 7frgrwopreg2 30338 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
23223mix3d 1339 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2423expcom 413 . . . 4 ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
25 difrab0eq 4470 . . . . 5 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ ↔ 𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
2612eqeq2i 2750 . . . . . . 7 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ 𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾})
27 rabid2 3470 . . . . . . 7 (𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
2826, 27bitri 275 . . . . . 6 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
29 3mix1 1331 . . . . . . 7 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
3029a1d 25 . . . . . 6 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3128, 30sylbi 217 . . . . 5 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3225, 31sylbi 217 . . . 4 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3324, 32jaoi 858 . . 3 (((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3421, 33jaoi 858 . 2 ((((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
356, 34mpcom 38 1 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848  w3o 1086   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3948  c0 4333  {csn 4626  {cpr 4628  cfv 6561  1c1 11156  chash 14369  Vtxcvtx 29013  Edgcedg 29064  VtxDegcvtxdg 29483   FriendGraph cfrgr 30277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-xadd 13155  df-fz 13548  df-hash 14370  df-edg 29065  df-uhgr 29075  df-ushgr 29076  df-upgr 29099  df-umgr 29100  df-uspgr 29167  df-usgr 29168  df-nbgr 29350  df-vtxdg 29484  df-frgr 30278
This theorem is referenced by:  frgrregorufr  30344
  Copyright terms: Public domain W3C validator