MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufr0 Structured version   Visualization version   GIF version

Theorem frgrregorufr0 30268
Description: In a friendship graph there are either no vertices having degree 𝐾, or all vertices have degree 𝐾 for any (nonnegative integer) 𝐾, unless there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrregorufr0.v 𝑉 = (Vtx‘𝐺)
frgrregorufr0.e 𝐸 = (Edg‘𝐺)
frgrregorufr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrregorufr0 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝑣,𝐷,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤   𝑣,𝐾,𝑤   𝑣,𝑉,𝑤
Allowed substitution hint:   𝐸(𝑤)

Proof of Theorem frgrregorufr0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrregorufr0.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrregorufr0.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 fveqeq2 6831 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑦) = 𝐾))
43cbvrabv 3405 . . 3 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑦𝑉 ∣ (𝐷𝑦) = 𝐾}
5 eqid 2729 . . 3 (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
61, 2, 4, 5frgrwopreg 30267 . 2 (𝐺 ∈ FriendGraph → (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)))
7 frgrregorufr0.e . . . . . . 7 𝐸 = (Edg‘𝐺)
81, 2, 4, 5, 7frgrwopreg1 30262 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
983mix3d 1339 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
109expcom 413 . . . 4 ((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
11 fveqeq2 6831 . . . . . . . 8 (𝑥 = 𝑣 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑣) = 𝐾))
1211cbvrabv 3405 . . . . . . 7 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾}
1312eqeq1i 2734 . . . . . 6 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅)
14 rabeq0 4339 . . . . . 6 ({𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
1513, 14bitri 275 . . . . 5 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
16 neqne 2933 . . . . . . . 8 (¬ (𝐷𝑣) = 𝐾 → (𝐷𝑣) ≠ 𝐾)
1716ralimi 3066 . . . . . . 7 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾)
18173mix2d 1338 . . . . . 6 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918a1d 25 . . . . 5 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2015, 19sylbi 217 . . . 4 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2110, 20jaoi 857 . . 3 (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
221, 2, 4, 5, 7frgrwopreg2 30263 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
23223mix3d 1339 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2423expcom 413 . . . 4 ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
25 difrab0eq 4421 . . . . 5 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ ↔ 𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
2612eqeq2i 2742 . . . . . . 7 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ 𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾})
27 rabid2 3428 . . . . . . 7 (𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
2826, 27bitri 275 . . . . . 6 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
29 3mix1 1331 . . . . . . 7 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
3029a1d 25 . . . . . 6 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3128, 30sylbi 217 . . . . 5 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3225, 31sylbi 217 . . . 4 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3324, 32jaoi 857 . . 3 (((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3421, 33jaoi 857 . 2 ((((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
356, 34mpcom 38 1 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  cdif 3900  c0 4284  {csn 4577  {cpr 4579  cfv 6482  1c1 11010  chash 14237  Vtxcvtx 28941  Edgcedg 28992  VtxDegcvtxdg 29411   FriendGraph cfrgr 30202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-xadd 13015  df-fz 13411  df-hash 14238  df-edg 28993  df-uhgr 29003  df-ushgr 29004  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-nbgr 29278  df-vtxdg 29412  df-frgr 30203
This theorem is referenced by:  frgrregorufr  30269
  Copyright terms: Public domain W3C validator