Step | Hyp | Ref
| Expression |
1 | | frgrregorufr0.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | frgrregorufr0.d |
. . 3
⊢ 𝐷 = (VtxDeg‘𝐺) |
3 | | fveqeq2 6765 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑦) = 𝐾)) |
4 | 3 | cbvrabv 3416 |
. . 3
⊢ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = {𝑦 ∈ 𝑉 ∣ (𝐷‘𝑦) = 𝐾} |
5 | | eqid 2738 |
. . 3
⊢ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) |
6 | 1, 2, 4, 5 | frgrwopreg 28588 |
. 2
⊢ (𝐺 ∈ FriendGraph →
(((♯‘{𝑥 ∈
𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1 ∨ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅))) |
7 | | frgrregorufr0.e |
. . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) |
8 | 1, 2, 4, 5, 7 | frgrwopreg1 28583 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧
(♯‘{𝑥 ∈
𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
9 | 8 | 3mix3d 1336 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧
(♯‘{𝑥 ∈
𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
10 | 9 | expcom 413 |
. . . 4
⊢
((♯‘{𝑥
∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
11 | | fveqeq2 6765 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑣) = 𝐾)) |
12 | 11 | cbvrabv 3416 |
. . . . . . 7
⊢ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = {𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾} |
13 | 12 | eqeq1i 2743 |
. . . . . 6
⊢ ({𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅ ↔ {𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾} = ∅) |
14 | | rabeq0 4315 |
. . . . . 6
⊢ ({𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾} = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ (𝐷‘𝑣) = 𝐾) |
15 | 13, 14 | bitri 274 |
. . . . 5
⊢ ({𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ (𝐷‘𝑣) = 𝐾) |
16 | | neqne 2950 |
. . . . . . . 8
⊢ (¬
(𝐷‘𝑣) = 𝐾 → (𝐷‘𝑣) ≠ 𝐾) |
17 | 16 | ralimi 3086 |
. . . . . . 7
⊢
(∀𝑣 ∈
𝑉 ¬ (𝐷‘𝑣) = 𝐾 → ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) |
18 | 17 | 3mix2d 1335 |
. . . . . 6
⊢
(∀𝑣 ∈
𝑉 ¬ (𝐷‘𝑣) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
19 | 18 | a1d 25 |
. . . . 5
⊢
(∀𝑣 ∈
𝑉 ¬ (𝐷‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
20 | 15, 19 | sylbi 216 |
. . . 4
⊢ ({𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
21 | 10, 20 | jaoi 853 |
. . 3
⊢
(((♯‘{𝑥
∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1 ∨ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
22 | 1, 2, 4, 5, 7 | frgrwopreg2 28584 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧
(♯‘(𝑉 ∖
{𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
23 | 22 | 3mix3d 1336 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧
(♯‘(𝑉 ∖
{𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
24 | 23 | expcom 413 |
. . . 4
⊢
((♯‘(𝑉
∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
25 | | difrab0eq 4400 |
. . . . 5
⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) |
26 | 12 | eqeq2i 2751 |
. . . . . . 7
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} ↔ 𝑉 = {𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾}) |
27 | | rabid2 3307 |
. . . . . . 7
⊢ (𝑉 = {𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾} ↔ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) |
28 | 26, 27 | bitri 274 |
. . . . . 6
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} ↔ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) |
29 | | 3mix1 1328 |
. . . . . . 7
⊢
(∀𝑣 ∈
𝑉 (𝐷‘𝑣) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
30 | 29 | a1d 25 |
. . . . . 6
⊢
(∀𝑣 ∈
𝑉 (𝐷‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
31 | 28, 30 | sylbi 216 |
. . . . 5
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
32 | 25, 31 | sylbi 216 |
. . . 4
⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
33 | 24, 32 | jaoi 853 |
. . 3
⊢
(((♯‘(𝑉
∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
34 | 21, 33 | jaoi 853 |
. 2
⊢
((((♯‘{𝑥
∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1 ∨ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅)) → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
35 | 6, 34 | mpcom 38 |
1
⊢ (𝐺 ∈ FriendGraph →
(∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |