MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufr0 Structured version   Visualization version   GIF version

Theorem frgrregorufr0 29331
Description: In a friendship graph there are either no vertices having degree 𝐾, or all vertices have degree 𝐾 for any (nonnegative integer) 𝐾, unless there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrregorufr0.v 𝑉 = (Vtx‘𝐺)
frgrregorufr0.e 𝐸 = (Edg‘𝐺)
frgrregorufr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrregorufr0 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝑣,𝐷,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤   𝑣,𝐾,𝑤   𝑣,𝑉,𝑤
Allowed substitution hint:   𝐸(𝑤)

Proof of Theorem frgrregorufr0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrregorufr0.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrregorufr0.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 fveqeq2 6856 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑦) = 𝐾))
43cbvrabv 3415 . . 3 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑦𝑉 ∣ (𝐷𝑦) = 𝐾}
5 eqid 2731 . . 3 (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
61, 2, 4, 5frgrwopreg 29330 . 2 (𝐺 ∈ FriendGraph → (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)))
7 frgrregorufr0.e . . . . . . 7 𝐸 = (Edg‘𝐺)
81, 2, 4, 5, 7frgrwopreg1 29325 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
983mix3d 1338 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
109expcom 414 . . . 4 ((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
11 fveqeq2 6856 . . . . . . . 8 (𝑥 = 𝑣 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑣) = 𝐾))
1211cbvrabv 3415 . . . . . . 7 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾}
1312eqeq1i 2736 . . . . . 6 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅)
14 rabeq0 4349 . . . . . 6 ({𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
1513, 14bitri 274 . . . . 5 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
16 neqne 2947 . . . . . . . 8 (¬ (𝐷𝑣) = 𝐾 → (𝐷𝑣) ≠ 𝐾)
1716ralimi 3082 . . . . . . 7 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾)
18173mix2d 1337 . . . . . 6 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918a1d 25 . . . . 5 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2015, 19sylbi 216 . . . 4 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2110, 20jaoi 855 . . 3 (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
221, 2, 4, 5, 7frgrwopreg2 29326 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
23223mix3d 1338 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2423expcom 414 . . . 4 ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
25 difrab0eq 4434 . . . . 5 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ ↔ 𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
2612eqeq2i 2744 . . . . . . 7 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ 𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾})
27 rabid2 3437 . . . . . . 7 (𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
2826, 27bitri 274 . . . . . 6 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
29 3mix1 1330 . . . . . . 7 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
3029a1d 25 . . . . . 6 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3128, 30sylbi 216 . . . . 5 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3225, 31sylbi 216 . . . 4 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3324, 32jaoi 855 . . 3 (((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3421, 33jaoi 855 . 2 ((((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
356, 34mpcom 38 1 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  {crab 3405  cdif 3910  c0 4287  {csn 4591  {cpr 4593  cfv 6501  1c1 11061  chash 14240  Vtxcvtx 28010  Edgcedg 28061  VtxDegcvtxdg 28476   FriendGraph cfrgr 29265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-n0 12423  df-xnn0 12495  df-z 12509  df-uz 12773  df-xadd 13043  df-fz 13435  df-hash 14241  df-edg 28062  df-uhgr 28072  df-ushgr 28073  df-upgr 28096  df-umgr 28097  df-uspgr 28164  df-usgr 28165  df-nbgr 28344  df-vtxdg 28477  df-frgr 29266
This theorem is referenced by:  frgrregorufr  29332
  Copyright terms: Public domain W3C validator