Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufr0 Structured version   Visualization version   GIF version

Theorem frgrregorufr0 27701
 Description: In a friendship graph there are either no vertices having degree 𝐾, or all vertices have degree 𝐾 for any (nonnegative integer) 𝐾, unless there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.) (Proof shortened by AV, 3-Jan-2022.)
Hypotheses
Ref Expression
frgrregorufr0.v 𝑉 = (Vtx‘𝐺)
frgrregorufr0.e 𝐸 = (Edg‘𝐺)
frgrregorufr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrregorufr0 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝑣,𝐷,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤   𝑣,𝐾,𝑤   𝑣,𝑉,𝑤
Allowed substitution hint:   𝐸(𝑤)

Proof of Theorem frgrregorufr0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrregorufr0.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrregorufr0.d . . 3 𝐷 = (VtxDeg‘𝐺)
3 fveqeq2 6446 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑦) = 𝐾))
43cbvrabv 3412 . . 3 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑦𝑉 ∣ (𝐷𝑦) = 𝐾}
5 eqid 2825 . . 3 (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
61, 2, 4, 5frgrwopreg 27700 . 2 (𝐺 ∈ FriendGraph → (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)))
7 frgrregorufr0.e . . . . . . 7 𝐸 = (Edg‘𝐺)
81, 2, 4, 5, 7frgrwopreg1 27695 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
983mix3d 1441 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
109expcom 404 . . . 4 ((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
11 fveqeq2 6446 . . . . . . . 8 (𝑥 = 𝑣 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑣) = 𝐾))
1211cbvrabv 3412 . . . . . . 7 {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾}
1312eqeq1i 2830 . . . . . 6 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅)
14 rabeq0 4188 . . . . . 6 ({𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
1513, 14bitri 267 . . . . 5 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ ↔ ∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾)
16 neqne 3007 . . . . . . . 8 (¬ (𝐷𝑣) = 𝐾 → (𝐷𝑣) ≠ 𝐾)
1716ralimi 3161 . . . . . . 7 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾)
18173mix2d 1440 . . . . . 6 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918a1d 25 . . . . 5 (∀𝑣𝑉 ¬ (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2015, 19sylbi 209 . . . 4 ({𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
2110, 20jaoi 888 . . 3 (((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
221, 2, 4, 5, 7frgrwopreg2 27696 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
23223mix3d 1441 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1) → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2423expcom 404 . . . 4 ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
25 difrab0eq 4263 . . . . 5 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ ↔ 𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})
2612eqeq2i 2837 . . . . . . 7 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ 𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾})
27 rabid2 3329 . . . . . . 7 (𝑉 = {𝑣𝑉 ∣ (𝐷𝑣) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
2826, 27bitri 267 . . . . . 6 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
29 3mix1 1433 . . . . . . 7 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
3029a1d 25 . . . . . 6 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3128, 30sylbi 209 . . . . 5 (𝑉 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3225, 31sylbi 209 . . . 4 ((𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3324, 32jaoi 888 . . 3 (((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
3421, 33jaoi 888 . 2 ((((♯‘{𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = 1 ∨ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} = ∅) ∨ ((♯‘(𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}) = ∅)) → (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
356, 34mpcom 38 1 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   ∨ wo 878   ∨ w3o 1110   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  ∀wral 3117  ∃wrex 3118  {crab 3121   ∖ cdif 3795  ∅c0 4146  {csn 4399  {cpr 4401  ‘cfv 6127  1c1 10260  ♯chash 13417  Vtxcvtx 26301  Edgcedg 26352  VtxDegcvtxdg 26770   FriendGraph cfrgr 27633 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-xadd 12240  df-fz 12627  df-hash 13418  df-edg 26353  df-uhgr 26363  df-ushgr 26364  df-upgr 26387  df-umgr 26388  df-uspgr 26456  df-usgr 26457  df-nbgr 26637  df-vtxdg 26771  df-frgr 27634 This theorem is referenced by:  frgrregorufr  27702
 Copyright terms: Public domain W3C validator