| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssnel | Structured version Visualization version GIF version | ||
| Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssnel | ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssdif 4320 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | |
| 2 | n0 4304 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) |
| 4 | eldif 3913 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 5 | 4 | exbii 1848 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 6 | 3, 5 | sylib 218 | 1 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 ⊊ wpss 3904 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-ss 3920 df-pss 3923 df-nul 4285 |
| This theorem is referenced by: pssnn 9082 php 9121 php3 9123 inf3lem2 9525 infpssr 10202 ssfin4 10204 genpnnp 10899 ltexprlem1 10930 reclem2pr 10942 mrieqv2d 17545 lbspss 20986 lsmcv 21048 lidlnz 21149 obslbs 21637 nmoid 24628 spansncvi 31596 fvineqsneq 37396 lsat0cv 39022 osumcllem11N 39955 pexmidlem8N 39966 isomenndlem 46521 |
| Copyright terms: Public domain | W3C validator |