MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssnel Structured version   Visualization version   GIF version

Theorem pssnel 4418
Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.)
Assertion
Ref Expression
pssnel (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pssnel
StepHypRef Expression
1 pssdif 4316 . . 3 (𝐴𝐵 → (𝐵𝐴) ≠ ∅)
2 n0 4300 . . 3 ((𝐵𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵𝐴))
31, 2sylib 218 . 2 (𝐴𝐵 → ∃𝑥 𝑥 ∈ (𝐵𝐴))
4 eldif 3907 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
54exbii 1849 . 2 (∃𝑥 𝑥 ∈ (𝐵𝐴) ↔ ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
63, 5sylib 218 1 (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wex 1780  wcel 2111  wne 2928  cdif 3894  wpss 3898  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-ss 3914  df-pss 3917  df-nul 4281
This theorem is referenced by:  pssnn  9078  php  9116  php3  9118  inf3lem2  9519  infpssr  10199  ssfin4  10201  genpnnp  10896  ltexprlem1  10927  reclem2pr  10939  mrieqv2d  17545  lbspss  21016  lsmcv  21078  lidlnz  21179  obslbs  21667  nmoid  24657  spansncvi  31632  fvineqsneq  37456  lsat0cv  39142  osumcllem11N  40075  pexmidlem8N  40086  isomenndlem  46638
  Copyright terms: Public domain W3C validator