Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssnel | Structured version Visualization version GIF version |
Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssnel | ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssdif 4300 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | |
2 | n0 4280 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) |
4 | eldif 3897 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
5 | 4 | exbii 1850 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
6 | 3, 5 | sylib 217 | 1 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ⊊ wpss 3888 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 |
This theorem is referenced by: pssnn 8951 php 8993 php3 8995 phpOLD 9005 php3OLD 9007 pssnnOLD 9040 inf3lem2 9387 infpssr 10064 ssfin4 10066 genpnnp 10761 ltexprlem1 10792 reclem2pr 10804 mrieqv2d 17348 lbspss 20344 lsmcv 20403 lidlnz 20499 obslbs 20937 nmoid 23906 spansncvi 30014 fvineqsneq 35583 lsat0cv 37047 osumcllem11N 37980 pexmidlem8N 37991 isomenndlem 44068 |
Copyright terms: Public domain | W3C validator |