MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssnel Structured version   Visualization version   GIF version

Theorem pssnel 4422
Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.)
Assertion
Ref Expression
pssnel (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pssnel
StepHypRef Expression
1 pssdif 4320 . . 3 (𝐴𝐵 → (𝐵𝐴) ≠ ∅)
2 n0 4304 . . 3 ((𝐵𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵𝐴))
31, 2sylib 218 . 2 (𝐴𝐵 → ∃𝑥 𝑥 ∈ (𝐵𝐴))
4 eldif 3913 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
54exbii 1848 . 2 (∃𝑥 𝑥 ∈ (𝐵𝐴) ↔ ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
63, 5sylib 218 1 (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wex 1779  wcel 2109  wne 2925  cdif 3900  wpss 3904  c0 4284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3438  df-dif 3906  df-ss 3920  df-pss 3923  df-nul 4285
This theorem is referenced by:  pssnn  9082  php  9121  php3  9123  inf3lem2  9525  infpssr  10202  ssfin4  10204  genpnnp  10899  ltexprlem1  10930  reclem2pr  10942  mrieqv2d  17545  lbspss  20986  lsmcv  21048  lidlnz  21149  obslbs  21637  nmoid  24628  spansncvi  31596  fvineqsneq  37396  lsat0cv  39022  osumcllem11N  39955  pexmidlem8N  39966  isomenndlem  46521
  Copyright terms: Public domain W3C validator