Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssnel | Structured version Visualization version GIF version |
Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssnel | ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssdif 4297 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | |
2 | n0 4277 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) |
4 | eldif 3893 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
5 | 4 | exbii 1851 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
6 | 3, 5 | sylib 217 | 1 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ⊊ wpss 3884 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 |
This theorem is referenced by: php 8897 php3 8899 pssnn 8913 pssnnOLD 8969 inf3lem2 9317 infpssr 9995 ssfin4 9997 genpnnp 10692 ltexprlem1 10723 reclem2pr 10735 mrieqv2d 17265 lbspss 20259 lsmcv 20318 lidlnz 20412 obslbs 20847 nmoid 23812 spansncvi 29915 fvineqsneq 35510 lsat0cv 36974 osumcllem11N 37907 pexmidlem8N 37918 isomenndlem 43958 |
Copyright terms: Public domain | W3C validator |