![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssnel | Structured version Visualization version GIF version |
Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssnel | ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssdif 4392 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | |
2 | n0 4376 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) |
4 | eldif 3986 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
5 | 4 | exbii 1846 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
6 | 3, 5 | sylib 218 | 1 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ⊊ wpss 3977 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-ss 3993 df-pss 3996 df-nul 4353 |
This theorem is referenced by: pssnn 9234 php 9273 php3 9275 phpOLD 9285 php3OLD 9287 inf3lem2 9698 infpssr 10377 ssfin4 10379 genpnnp 11074 ltexprlem1 11105 reclem2pr 11117 mrieqv2d 17697 lbspss 21104 lsmcv 21166 lidlnz 21275 obslbs 21773 nmoid 24784 spansncvi 31684 fvineqsneq 37378 lsat0cv 38989 osumcllem11N 39923 pexmidlem8N 39934 isomenndlem 46451 |
Copyright terms: Public domain | W3C validator |