| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssnel | Structured version Visualization version GIF version | ||
| Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssnel | ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssdif 4316 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | |
| 2 | n0 4300 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) |
| 4 | eldif 3907 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 5 | 4 | exbii 1849 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 6 | 3, 5 | sylib 218 | 1 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ⊊ wpss 3898 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-ss 3914 df-pss 3917 df-nul 4281 |
| This theorem is referenced by: pssnn 9078 php 9116 php3 9118 inf3lem2 9519 infpssr 10199 ssfin4 10201 genpnnp 10896 ltexprlem1 10927 reclem2pr 10939 mrieqv2d 17545 lbspss 21016 lsmcv 21078 lidlnz 21179 obslbs 21667 nmoid 24657 spansncvi 31632 fvineqsneq 37456 lsat0cv 39142 osumcllem11N 40075 pexmidlem8N 40086 isomenndlem 46638 |
| Copyright terms: Public domain | W3C validator |