| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssnel | Structured version Visualization version GIF version | ||
| Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssnel | ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssdif 4344 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | |
| 2 | n0 4328 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) |
| 4 | eldif 3936 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 5 | 4 | exbii 1848 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 6 | 3, 5 | sylib 218 | 1 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ⊊ wpss 3927 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-ss 3943 df-pss 3946 df-nul 4309 |
| This theorem is referenced by: pssnn 9182 php 9221 php3 9223 phpOLD 9231 php3OLD 9233 inf3lem2 9643 infpssr 10322 ssfin4 10324 genpnnp 11019 ltexprlem1 11050 reclem2pr 11062 mrieqv2d 17651 lbspss 21040 lsmcv 21102 lidlnz 21203 obslbs 21690 nmoid 24681 spansncvi 31633 fvineqsneq 37430 lsat0cv 39051 osumcllem11N 39985 pexmidlem8N 39996 isomenndlem 46559 |
| Copyright terms: Public domain | W3C validator |