| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssnel | Structured version Visualization version GIF version | ||
| Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| pssnel | ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssdif 4332 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | |
| 2 | n0 4316 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) |
| 4 | eldif 3924 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 5 | 4 | exbii 1848 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 6 | 3, 5 | sylib 218 | 1 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ⊊ wpss 3915 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-ss 3931 df-pss 3934 df-nul 4297 |
| This theorem is referenced by: pssnn 9132 php 9171 php3 9173 inf3lem2 9582 infpssr 10261 ssfin4 10263 genpnnp 10958 ltexprlem1 10989 reclem2pr 11001 mrieqv2d 17600 lbspss 20989 lsmcv 21051 lidlnz 21152 obslbs 21639 nmoid 24630 spansncvi 31581 fvineqsneq 37400 lsat0cv 39026 osumcllem11N 39960 pexmidlem8N 39971 isomenndlem 46528 |
| Copyright terms: Public domain | W3C validator |