MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssnel Structured version   Visualization version   GIF version

Theorem pssnel 4430
Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.)
Assertion
Ref Expression
pssnel (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pssnel
StepHypRef Expression
1 pssdif 4328 . . 3 (𝐴𝐵 → (𝐵𝐴) ≠ ∅)
2 n0 4312 . . 3 ((𝐵𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵𝐴))
31, 2sylib 218 . 2 (𝐴𝐵 → ∃𝑥 𝑥 ∈ (𝐵𝐴))
4 eldif 3921 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
54exbii 1848 . 2 (∃𝑥 𝑥 ∈ (𝐵𝐴) ↔ ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
63, 5sylib 218 1 (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wex 1779  wcel 2109  wne 2925  cdif 3908  wpss 3912  c0 4292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3446  df-dif 3914  df-ss 3928  df-pss 3931  df-nul 4293
This theorem is referenced by:  pssnn  9109  php  9148  php3  9150  inf3lem2  9558  infpssr  10237  ssfin4  10239  genpnnp  10934  ltexprlem1  10965  reclem2pr  10977  mrieqv2d  17580  lbspss  21021  lsmcv  21083  lidlnz  21184  obslbs  21672  nmoid  24663  spansncvi  31631  fvineqsneq  37393  lsat0cv  39019  osumcllem11N  39953  pexmidlem8N  39964  isomenndlem  46521
  Copyright terms: Public domain W3C validator