![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssnel | Structured version Visualization version GIF version |
Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
pssnel | ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssdif 4374 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | |
2 | n0 4358 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴)) |
4 | eldif 3972 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
5 | 4 | exbii 1844 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
6 | 3, 5 | sylib 218 | 1 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 ≠ wne 2937 ∖ cdif 3959 ⊊ wpss 3963 ∅c0 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-v 3479 df-dif 3965 df-ss 3979 df-pss 3982 df-nul 4339 |
This theorem is referenced by: pssnn 9206 php 9244 php3 9246 phpOLD 9256 php3OLD 9258 inf3lem2 9666 infpssr 10345 ssfin4 10347 genpnnp 11042 ltexprlem1 11073 reclem2pr 11085 mrieqv2d 17683 lbspss 21098 lsmcv 21160 lidlnz 21269 obslbs 21767 nmoid 24778 spansncvi 31680 fvineqsneq 37394 lsat0cv 39014 osumcllem11N 39948 pexmidlem8N 39959 isomenndlem 46485 |
Copyright terms: Public domain | W3C validator |