Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrabeq | Structured version Visualization version GIF version |
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
Ref | Expression |
---|---|
ssrabeq | ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3993 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ 𝑉 | |
2 | 1 | biantru 533 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ∧ {𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ 𝑉)) |
3 | eqss 3916 | . 2 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ∧ {𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ 𝑉)) | |
4 | 2, 3 | bitr4i 281 | 1 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 {crab 3065 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: difrab0eq 4384 |
Copyright terms: Public domain | W3C validator |