MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabeq Structured version   Visualization version   GIF version

Theorem ssrabeq 4010
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
ssrabeq (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrabeq
StepHypRef Expression
1 ssrab2 4007 . . 3 {𝑥𝑉𝜑} ⊆ 𝑉
21biantru 533 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ (𝑉 ⊆ {𝑥𝑉𝜑} ∧ {𝑥𝑉𝜑} ⊆ 𝑉))
3 eqss 3930 . 2 (𝑉 = {𝑥𝑉𝜑} ↔ (𝑉 ⊆ {𝑥𝑉𝜑} ∧ {𝑥𝑉𝜑} ⊆ 𝑉))
42, 3bitr4i 281 1 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  {crab 3110  wss 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rab 3115  df-v 3443  df-in 3888  df-ss 3898
This theorem is referenced by:  difrab0eq  4377
  Copyright terms: Public domain W3C validator