![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsymssdifssd | Structured version Visualization version GIF version |
Description: If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
Ref | Expression |
---|---|
difsymssdifssd.1 | ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
difsymssdifssd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsssymdif 4248 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | |
2 | difsymssdifssd.1 | . 2 ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sstrid 3989 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3941 ⊆ wss 3944 △ csymdif 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 df-symdif 4238 |
This theorem is referenced by: mbfeqalem1 25557 |
Copyright terms: Public domain | W3C validator |