![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsymssdifssd | Structured version Visualization version GIF version |
Description: If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
Ref | Expression |
---|---|
difsymssdifssd.1 | ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
difsymssdifssd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsssymdif 4251 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | |
2 | difsymssdifssd.1 | . 2 ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sstrid 3988 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3941 ⊆ wss 3944 △ csymdif 4240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-un 3949 df-ss 3961 df-symdif 4241 |
This theorem is referenced by: mbfeqalem1 25614 |
Copyright terms: Public domain | W3C validator |