Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsymssdifssd | Structured version Visualization version GIF version |
Description: If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
Ref | Expression |
---|---|
difsymssdifssd.1 | ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
difsymssdifssd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsssymdif 4186 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | |
2 | difsymssdifssd.1 | . 2 ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sstrid 3932 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3884 ⊆ wss 3887 △ csymdif 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 |
This theorem is referenced by: mbfeqalem1 24805 |
Copyright terms: Public domain | W3C validator |