![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsymssdifssd | Structured version Visualization version GIF version |
Description: If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
Ref | Expression |
---|---|
difsymssdifssd.1 | ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
difsymssdifssd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsssymdif 4252 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | |
2 | difsymssdifssd.1 | . 2 ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sstrid 3993 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3945 ⊆ wss 3948 △ csymdif 4241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3953 df-in 3955 df-ss 3965 df-symdif 4242 |
This theorem is referenced by: mbfeqalem1 25157 |
Copyright terms: Public domain | W3C validator |