MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsymssdifssd Structured version   Visualization version   GIF version

Theorem difsymssdifssd 4187
Description: If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
difsymssdifssd.1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Assertion
Ref Expression
difsymssdifssd (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem difsymssdifssd
StepHypRef Expression
1 difsssymdif 4186 . 2 (𝐴𝐵) ⊆ (𝐴𝐵)
2 difsymssdifssd.1 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
31, 2sstrid 3932 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3884  wss 3887  csymdif 4175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-symdif 4176
This theorem is referenced by:  mbfeqalem1  24805
  Copyright terms: Public domain W3C validator