MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsymssdifssd Structured version   Visualization version   GIF version

Theorem difsymssdifssd 4227
Description: If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
difsymssdifssd.1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Assertion
Ref Expression
difsymssdifssd (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem difsymssdifssd
StepHypRef Expression
1 difsssymdif 4226 . 2 (𝐴𝐵) ⊆ (𝐴𝐵)
2 difsymssdifssd.1 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
31, 2sstrid 3958 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3911  wss 3914  csymdif 4215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-symdif 4216
This theorem is referenced by:  mbfeqalem1  25542
  Copyright terms: Public domain W3C validator