MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unabs Structured version   Visualization version   GIF version

Theorem unabs 4253
Description: Absorption law for union. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
unabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem unabs
StepHypRef Expression
1 inss1 4227 . 2 (𝐴𝐵) ⊆ 𝐴
2 ssequn2 4182 . 2 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴 ∪ (𝐴𝐵)) = 𝐴)
31, 2mpbi 229 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3945  cin 3946  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-un 3952  df-in 3954  df-ss 3964
This theorem is referenced by:  volun  25294
  Copyright terms: Public domain W3C validator