![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unabs | Structured version Visualization version GIF version |
Description: Absorption law for union. (Contributed by NM, 16-Apr-2006.) |
Ref | Expression |
---|---|
unabs | ⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4053 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | ssequn2 4009 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴) | |
3 | 1, 2 | mpbi 222 | 1 ⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∪ cun 3790 ∩ cin 3791 ⊆ wss 3792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-un 3797 df-in 3799 df-ss 3806 |
This theorem is referenced by: volun 23753 |
Copyright terms: Public domain | W3C validator |