MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unabs Structured version   Visualization version   GIF version

Theorem unabs 4240
Description: Absorption law for union. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
unabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem unabs
StepHypRef Expression
1 inss1 4212 . 2 (𝐴𝐵) ⊆ 𝐴
2 ssequn2 4164 . 2 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴 ∪ (𝐴𝐵)) = 𝐴)
31, 2mpbi 230 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3924  cin 3925  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931  df-in 3933  df-ss 3943
This theorem is referenced by:  volun  25498
  Copyright terms: Public domain W3C validator