Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unabs | Structured version Visualization version GIF version |
Description: Absorption law for union. (Contributed by NM, 16-Apr-2006.) |
Ref | Expression |
---|---|
unabs | ⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4173 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | ssequn2 4128 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-un 3902 df-in 3904 df-ss 3914 |
This theorem is referenced by: volun 24781 |
Copyright terms: Public domain | W3C validator |