| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstrid | Structured version Visualization version GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | sstrd 3994 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Copyright terms: Public domain | W3C validator |