Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sstrid | Structured version Visualization version GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.) |
Ref | Expression |
---|---|
sstrid.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrid.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3 | sstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | sstrd 3927 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Copyright terms: Public domain | W3C validator |