MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem1 Structured version   Visualization version   GIF version

Theorem mbfeqalem1 23699
Description: Lemma for mbfeqalem2 23700. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.)
Hypotheses
Ref Expression
mbfeqa.1 (𝜑𝐴 ⊆ ℝ)
mbfeqa.2 (𝜑 → (vol*‘𝐴) = 0)
mbfeqa.3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
mbfeqalem.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
mbfeqalem.5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
Assertion
Ref Expression
mbfeqalem1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mbfeqalem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsymdif4 4011 . . . . 5 (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) = {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))}
2 eldif 3742 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵𝐴) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐴))
3 mbfeqa.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
4 eldifi 3894 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐵𝐴) → 𝑥𝐵)
5 mbfeqalem.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
64, 5sylan2 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℝ)
7 eqid 2765 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
87fvmpt2 6480 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐶 ∈ ℝ) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
94, 6, 8syl2an2 677 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
10 mbfeqalem.5 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
114, 10sylan2 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐷 ∈ ℝ)
12 eqid 2765 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐷) = (𝑥𝐵𝐷)
1312fvmpt2 6480 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐷 ∈ ℝ) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
144, 11, 13syl2an2 677 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
153, 9, 143eqtr4d 2809 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
1615ralrimiva 3113 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
17 nfv 2009 . . . . . . . . . . . . . . . 16 𝑧((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥)
18 nffvmpt1 6386 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐶)‘𝑧)
19 nffvmpt1 6386 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐷)‘𝑧)
2018, 19nfeq 2919 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)
21 fveq2 6375 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐶)‘𝑧))
22 fveq2 6375 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐷)‘𝑥) = ((𝑥𝐵𝐷)‘𝑧))
2321, 22eqeq12d 2780 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)))
2417, 20, 23cbvral 3315 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2516, 24sylib 209 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2625r19.21bi 3079 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2726eleq1d 2829 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐵𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
282, 27sylan2br 588 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ¬ 𝑧𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
2928anass1rs 645 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝐴) ∧ 𝑧𝐵) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
3029pm5.32da 574 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → ((𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
315fmpttd 6575 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐶):𝐵⟶ℝ)
3231ffnd 6224 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐶) Fn 𝐵)
3332adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐶) Fn 𝐵)
34 elpreima 6527 . . . . . . . . . 10 ((𝑥𝐵𝐶) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3533, 34syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3610fmpttd 6575 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐷):𝐵⟶ℝ)
3736ffnd 6224 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐷) Fn 𝐵)
3837adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐷) Fn 𝐵)
39 elpreima 6527 . . . . . . . . . 10 ((𝑥𝐵𝐷) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4130, 35, 403bitr4d 302 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)))
4241ex 401 . . . . . . 7 (𝜑 → (¬ 𝑧𝐴 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))))
4342con1d 141 . . . . . 6 (𝜑 → (¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)) → 𝑧𝐴))
4443abssdv 3836 . . . . 5 (𝜑 → {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))} ⊆ 𝐴)
451, 44syl5eqss 3809 . . . 4 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
4645difsymssdifssd 4017 . . 3 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
47 mbfeqa.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4846, 47sstrd 3771 . 2 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ)
49 mbfeqa.2 . . 3 (𝜑 → (vol*‘𝐴) = 0)
50 ovolssnul 23545 . . 3 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
5146, 47, 49, 50syl3anc 1490 . 2 (𝜑 → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
52 nulmbl 23593 . 2 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ ∧ (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0) → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
5348, 51, 52syl2anc 579 1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {cab 2751  wral 3055  cdif 3729  wss 3732  csymdif 4004  cmpt 4888  ccnv 5276  dom cdm 5277  cima 5280   Fn wfn 6063  cfv 6068  cr 10188  0cc0 10189  vol*covol 23520  volcvol 23521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-symdif 4005  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fl 12801  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-ovol 23522  df-vol 23523
This theorem is referenced by:  mbfeqalem2  23700
  Copyright terms: Public domain W3C validator