MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem1 Structured version   Visualization version   GIF version

Theorem mbfeqalem1 25549
Description: Lemma for mbfeqalem2 25550. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.)
Hypotheses
Ref Expression
mbfeqa.1 (𝜑𝐴 ⊆ ℝ)
mbfeqa.2 (𝜑 → (vol*‘𝐴) = 0)
mbfeqa.3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
mbfeqalem.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
mbfeqalem.5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
Assertion
Ref Expression
mbfeqalem1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mbfeqalem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsymdif4 4225 . . . . 5 (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) = {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))}
2 eldif 3927 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵𝐴) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐴))
3 mbfeqa.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
4 eldifi 4097 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐵𝐴) → 𝑥𝐵)
5 mbfeqalem.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
64, 5sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℝ)
7 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
87fvmpt2 6982 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐶 ∈ ℝ) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
94, 6, 8syl2an2 686 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
10 mbfeqalem.5 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
114, 10sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐷 ∈ ℝ)
12 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐷) = (𝑥𝐵𝐷)
1312fvmpt2 6982 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐷 ∈ ℝ) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
144, 11, 13syl2an2 686 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
153, 9, 143eqtr4d 2775 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
1615ralrimiva 3126 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
17 nfv 1914 . . . . . . . . . . . . . . . 16 𝑧((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥)
18 nffvmpt1 6872 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐶)‘𝑧)
19 nffvmpt1 6872 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐷)‘𝑧)
2018, 19nfeq 2906 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)
21 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐶)‘𝑧))
22 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐷)‘𝑥) = ((𝑥𝐵𝐷)‘𝑧))
2321, 22eqeq12d 2746 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)))
2417, 20, 23cbvralw 3282 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2516, 24sylib 218 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2625r19.21bi 3230 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2726eleq1d 2814 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐵𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
282, 27sylan2br 595 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ¬ 𝑧𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
2928anass1rs 655 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝐴) ∧ 𝑧𝐵) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
3029pm5.32da 579 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → ((𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
315fmpttd 7090 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐶):𝐵⟶ℝ)
3231ffnd 6692 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐶) Fn 𝐵)
3332adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐶) Fn 𝐵)
34 elpreima 7033 . . . . . . . . . 10 ((𝑥𝐵𝐶) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3533, 34syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3610fmpttd 7090 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐷):𝐵⟶ℝ)
3736ffnd 6692 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐷) Fn 𝐵)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐷) Fn 𝐵)
39 elpreima 7033 . . . . . . . . . 10 ((𝑥𝐵𝐷) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4130, 35, 403bitr4d 311 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)))
4241ex 412 . . . . . . 7 (𝜑 → (¬ 𝑧𝐴 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))))
4342con1d 145 . . . . . 6 (𝜑 → (¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)) → 𝑧𝐴))
4443abssdv 4034 . . . . 5 (𝜑 → {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))} ⊆ 𝐴)
451, 44eqsstrid 3988 . . . 4 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
4645difsymssdifssd 4230 . . 3 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
47 mbfeqa.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4846, 47sstrd 3960 . 2 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ)
49 mbfeqa.2 . . 3 (𝜑 → (vol*‘𝐴) = 0)
50 ovolssnul 25395 . . 3 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
5146, 47, 49, 50syl3anc 1373 . 2 (𝜑 → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
52 nulmbl 25443 . 2 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ ∧ (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0) → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
5348, 51, 52syl2anc 584 1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  cdif 3914  wss 3917  csymdif 4218  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  cfv 6514  cr 11074  0cc0 11075  vol*covol 25370  volcvol 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-ovol 25372  df-vol 25373
This theorem is referenced by:  mbfeqalem2  25550
  Copyright terms: Public domain W3C validator