MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem1 Structured version   Visualization version   GIF version

Theorem mbfeqalem1 25695
Description: Lemma for mbfeqalem2 25696. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.)
Hypotheses
Ref Expression
mbfeqa.1 (𝜑𝐴 ⊆ ℝ)
mbfeqa.2 (𝜑 → (vol*‘𝐴) = 0)
mbfeqa.3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
mbfeqalem.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
mbfeqalem.5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
Assertion
Ref Expression
mbfeqalem1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mbfeqalem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsymdif4 4278 . . . . 5 (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) = {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))}
2 eldif 3986 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵𝐴) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐴))
3 mbfeqa.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
4 eldifi 4154 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐵𝐴) → 𝑥𝐵)
5 mbfeqalem.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
64, 5sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℝ)
7 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
87fvmpt2 7040 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐶 ∈ ℝ) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
94, 6, 8syl2an2 685 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
10 mbfeqalem.5 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
114, 10sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐷 ∈ ℝ)
12 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐷) = (𝑥𝐵𝐷)
1312fvmpt2 7040 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐷 ∈ ℝ) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
144, 11, 13syl2an2 685 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
153, 9, 143eqtr4d 2790 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
1615ralrimiva 3152 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
17 nfv 1913 . . . . . . . . . . . . . . . 16 𝑧((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥)
18 nffvmpt1 6931 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐶)‘𝑧)
19 nffvmpt1 6931 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐷)‘𝑧)
2018, 19nfeq 2922 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)
21 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐶)‘𝑧))
22 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐷)‘𝑥) = ((𝑥𝐵𝐷)‘𝑧))
2321, 22eqeq12d 2756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)))
2417, 20, 23cbvralw 3312 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2516, 24sylib 218 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2625r19.21bi 3257 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2726eleq1d 2829 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐵𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
282, 27sylan2br 594 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ¬ 𝑧𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
2928anass1rs 654 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝐴) ∧ 𝑧𝐵) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
3029pm5.32da 578 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → ((𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
315fmpttd 7149 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐶):𝐵⟶ℝ)
3231ffnd 6748 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐶) Fn 𝐵)
3332adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐶) Fn 𝐵)
34 elpreima 7091 . . . . . . . . . 10 ((𝑥𝐵𝐶) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3533, 34syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3610fmpttd 7149 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐷):𝐵⟶ℝ)
3736ffnd 6748 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐷) Fn 𝐵)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐷) Fn 𝐵)
39 elpreima 7091 . . . . . . . . . 10 ((𝑥𝐵𝐷) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4130, 35, 403bitr4d 311 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)))
4241ex 412 . . . . . . 7 (𝜑 → (¬ 𝑧𝐴 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))))
4342con1d 145 . . . . . 6 (𝜑 → (¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)) → 𝑧𝐴))
4443abssdv 4091 . . . . 5 (𝜑 → {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))} ⊆ 𝐴)
451, 44eqsstrid 4057 . . . 4 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
4645difsymssdifssd 4283 . . 3 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
47 mbfeqa.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4846, 47sstrd 4019 . 2 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ)
49 mbfeqa.2 . . 3 (𝜑 → (vol*‘𝐴) = 0)
50 ovolssnul 25541 . . 3 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
5146, 47, 49, 50syl3anc 1371 . 2 (𝜑 → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
52 nulmbl 25589 . 2 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ ∧ (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0) → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
5348, 51, 52syl2anc 583 1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  cdif 3973  wss 3976  csymdif 4271  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703   Fn wfn 6568  cfv 6573  cr 11183  0cc0 11184  vol*covol 25516  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-ovol 25518  df-vol 25519
This theorem is referenced by:  mbfeqalem2  25696
  Copyright terms: Public domain W3C validator