Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem1 Structured version   Visualization version   GIF version

Theorem mbfeqalem1 24176
 Description: Lemma for mbfeqalem2 24177. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.)
Hypotheses
Ref Expression
mbfeqa.1 (𝜑𝐴 ⊆ ℝ)
mbfeqa.2 (𝜑 → (vol*‘𝐴) = 0)
mbfeqa.3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
mbfeqalem.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
mbfeqalem.5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
Assertion
Ref Expression
mbfeqalem1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mbfeqalem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsymdif4 4229 . . . . 5 (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) = {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))}
2 eldif 3950 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵𝐴) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐴))
3 mbfeqa.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
4 eldifi 4107 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐵𝐴) → 𝑥𝐵)
5 mbfeqalem.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
64, 5sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℝ)
7 eqid 2826 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
87fvmpt2 6777 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐶 ∈ ℝ) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
94, 6, 8syl2an2 682 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
10 mbfeqalem.5 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
114, 10sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐷 ∈ ℝ)
12 eqid 2826 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐷) = (𝑥𝐵𝐷)
1312fvmpt2 6777 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐷 ∈ ℝ) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
144, 11, 13syl2an2 682 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
153, 9, 143eqtr4d 2871 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
1615ralrimiva 3187 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
17 nfv 1908 . . . . . . . . . . . . . . . 16 𝑧((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥)
18 nffvmpt1 6680 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐶)‘𝑧)
19 nffvmpt1 6680 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐷)‘𝑧)
2018, 19nfeq 2996 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)
21 fveq2 6669 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐶)‘𝑧))
22 fveq2 6669 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐷)‘𝑥) = ((𝑥𝐵𝐷)‘𝑧))
2321, 22eqeq12d 2842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)))
2417, 20, 23cbvralw 3447 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2516, 24sylib 219 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2625r19.21bi 3213 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2726eleq1d 2902 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐵𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
282, 27sylan2br 594 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ¬ 𝑧𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
2928anass1rs 651 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝐴) ∧ 𝑧𝐵) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
3029pm5.32da 579 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → ((𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
315fmpttd 6877 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐶):𝐵⟶ℝ)
3231ffnd 6514 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐶) Fn 𝐵)
3332adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐶) Fn 𝐵)
34 elpreima 6826 . . . . . . . . . 10 ((𝑥𝐵𝐶) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3533, 34syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3610fmpttd 6877 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐷):𝐵⟶ℝ)
3736ffnd 6514 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐷) Fn 𝐵)
3837adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐷) Fn 𝐵)
39 elpreima 6826 . . . . . . . . . 10 ((𝑥𝐵𝐷) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4130, 35, 403bitr4d 312 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)))
4241ex 413 . . . . . . 7 (𝜑 → (¬ 𝑧𝐴 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))))
4342con1d 147 . . . . . 6 (𝜑 → (¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)) → 𝑧𝐴))
4443abssdv 4049 . . . . 5 (𝜑 → {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))} ⊆ 𝐴)
451, 44eqsstrid 4019 . . . 4 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
4645difsymssdifssd 4234 . . 3 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
47 mbfeqa.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4846, 47sstrd 3981 . 2 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ)
49 mbfeqa.2 . . 3 (𝜑 → (vol*‘𝐴) = 0)
50 ovolssnul 24022 . . 3 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
5146, 47, 49, 50syl3anc 1365 . 2 (𝜑 → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
52 nulmbl 24070 . 2 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ ∧ (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0) → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
5348, 51, 52syl2anc 584 1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107  {cab 2804  ∀wral 3143   ∖ cdif 3937   ⊆ wss 3940   △ csymdif 4222   ↦ cmpt 5143  ◡ccnv 5553  dom cdm 5554   “ cima 5557   Fn wfn 6349  ‘cfv 6354  ℝcr 10530  0cc0 10531  vol*covol 23997  volcvol 23998 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-symdif 4223  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fl 13157  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-ovol 23999  df-vol 24000 This theorem is referenced by:  mbfeqalem2  24177
 Copyright terms: Public domain W3C validator