MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem1 Structured version   Visualization version   GIF version

Theorem mbfeqalem1 24805
Description: Lemma for mbfeqalem2 24806. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.)
Hypotheses
Ref Expression
mbfeqa.1 (𝜑𝐴 ⊆ ℝ)
mbfeqa.2 (𝜑 → (vol*‘𝐴) = 0)
mbfeqa.3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
mbfeqalem.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
mbfeqalem.5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
Assertion
Ref Expression
mbfeqalem1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mbfeqalem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsymdif4 4182 . . . . 5 (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) = {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))}
2 eldif 3897 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵𝐴) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐴))
3 mbfeqa.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
4 eldifi 4061 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐵𝐴) → 𝑥𝐵)
5 mbfeqalem.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
64, 5sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℝ)
7 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
87fvmpt2 6886 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐶 ∈ ℝ) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
94, 6, 8syl2an2 683 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = 𝐶)
10 mbfeqalem.5 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
114, 10sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐷 ∈ ℝ)
12 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝐷) = (𝑥𝐵𝐷)
1312fvmpt2 6886 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝐷 ∈ ℝ) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
144, 11, 13syl2an2 683 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐷)‘𝑥) = 𝐷)
153, 9, 143eqtr4d 2788 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
1615ralrimiva 3103 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥))
17 nfv 1917 . . . . . . . . . . . . . . . 16 𝑧((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥)
18 nffvmpt1 6785 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐶)‘𝑧)
19 nffvmpt1 6785 . . . . . . . . . . . . . . . . 17 𝑥((𝑥𝐵𝐷)‘𝑧)
2018, 19nfeq 2920 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)
21 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐶)‘𝑧))
22 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝐵𝐷)‘𝑥) = ((𝑥𝐵𝐷)‘𝑧))
2321, 22eqeq12d 2754 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧)))
2417, 20, 23cbvralw 3373 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑥) = ((𝑥𝐵𝐷)‘𝑥) ↔ ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2516, 24sylib 217 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑧 ∈ (𝐵𝐴)((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2625r19.21bi 3134 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐵𝐴)) → ((𝑥𝐵𝐶)‘𝑧) = ((𝑥𝐵𝐷)‘𝑧))
2726eleq1d 2823 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐵𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
282, 27sylan2br 595 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ¬ 𝑧𝐴)) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
2928anass1rs 652 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝐴) ∧ 𝑧𝐵) → (((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦))
3029pm5.32da 579 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → ((𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
315fmpttd 6989 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐶):𝐵⟶ℝ)
3231ffnd 6601 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐶) Fn 𝐵)
3332adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐶) Fn 𝐵)
34 elpreima 6935 . . . . . . . . . 10 ((𝑥𝐵𝐶) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3533, 34syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐶)‘𝑧) ∈ 𝑦)))
3610fmpttd 6989 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝐷):𝐵⟶ℝ)
3736ffnd 6601 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝐷) Fn 𝐵)
3837adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑥𝐵𝐷) Fn 𝐵)
39 elpreima 6935 . . . . . . . . . 10 ((𝑥𝐵𝐷) Fn 𝐵 → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦) ↔ (𝑧𝐵 ∧ ((𝑥𝐵𝐷)‘𝑧) ∈ 𝑦)))
4130, 35, 403bitr4d 311 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝐴) → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)))
4241ex 413 . . . . . . 7 (𝜑 → (¬ 𝑧𝐴 → (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))))
4342con1d 145 . . . . . 6 (𝜑 → (¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦)) → 𝑧𝐴))
4443abssdv 4002 . . . . 5 (𝜑 → {𝑧 ∣ ¬ (𝑧 ∈ ((𝑥𝐵𝐶) “ 𝑦) ↔ 𝑧 ∈ ((𝑥𝐵𝐷) “ 𝑦))} ⊆ 𝐴)
451, 44eqsstrid 3969 . . . 4 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) △ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
4645difsymssdifssd 4187 . . 3 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴)
47 mbfeqa.1 . . 3 (𝜑𝐴 ⊆ ℝ)
4846, 47sstrd 3931 . 2 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ)
49 mbfeqa.2 . . 3 (𝜑 → (vol*‘𝐴) = 0)
50 ovolssnul 24651 . . 3 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
5146, 47, 49, 50syl3anc 1370 . 2 (𝜑 → (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0)
52 nulmbl 24699 . 2 (((((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ⊆ ℝ ∧ (vol*‘(((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = 0) → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
5348, 51, 52syl2anc 584 1 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  cdif 3884  wss 3887  csymdif 4175  cmpt 5157  ccnv 5588  dom cdm 5589  cima 5592   Fn wfn 6428  cfv 6433  cr 10870  0cc0 10871  vol*covol 24626  volcvol 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-ovol 24628  df-vol 24629
This theorem is referenced by:  mbfeqalem2  24806
  Copyright terms: Public domain W3C validator