Step | Hyp | Ref
| Expression |
1 | | dfsymdif4 4179 |
. . . . 5
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) △ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) = {𝑧 ∣ ¬ (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ↔ 𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))} |
2 | | eldif 3893 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝐵 ∖ 𝐴) ↔ (𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ∈ 𝐴)) |
3 | | mbfeqa.3 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) |
4 | | eldifi 4057 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) → 𝑥 ∈ 𝐵) |
5 | | mbfeqalem.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) |
6 | 4, 5 | sylan2 592 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℝ) |
7 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
8 | 7 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐵 ∧ 𝐶 ∈ ℝ) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = 𝐶) |
9 | 4, 6, 8 | syl2an2 682 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = 𝐶) |
10 | | mbfeqalem.5 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) |
11 | 4, 10 | sylan2 592 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐷 ∈ ℝ) |
12 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐵 ↦ 𝐷) = (𝑥 ∈ 𝐵 ↦ 𝐷) |
13 | 12 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐵 ∧ 𝐷 ∈ ℝ) → ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑥) = 𝐷) |
14 | 4, 11, 13 | syl2an2 682 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑥) = 𝐷) |
15 | 3, 9, 14 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑥)) |
16 | 15 | ralrimiva 3107 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑥)) |
17 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑥) |
18 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) |
19 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧) |
20 | 18, 19 | nfeq 2919 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧) |
21 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧)) |
22 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧)) |
23 | 21, 22 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑥) ↔ ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧))) |
24 | 17, 20, 23 | cbvralw 3363 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
(𝐵 ∖ 𝐴)((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑥) ↔ ∀𝑧 ∈ (𝐵 ∖ 𝐴)((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧)) |
25 | 16, 24 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ (𝐵 ∖ 𝐴)((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧)) |
26 | 25 | r19.21bi 3132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐵 ∖ 𝐴)) → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧)) |
27 | 26 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐵 ∖ 𝐴)) → (((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧) ∈ 𝑦)) |
28 | 2, 27 | sylan2br 594 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ∈ 𝐴)) → (((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧) ∈ 𝑦)) |
29 | 28 | anass1rs 651 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) ∈ 𝑦 ↔ ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧) ∈ 𝑦)) |
30 | 29 | pm5.32da 578 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝐴) → ((𝑧 ∈ 𝐵 ∧ ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) ∈ 𝑦) ↔ (𝑧 ∈ 𝐵 ∧ ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧) ∈ 𝑦))) |
31 | 5 | fmpttd 6971 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℝ) |
32 | 31 | ffnd 6585 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) Fn 𝐵) |
33 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↦ 𝐶) Fn 𝐵) |
34 | | elpreima 6917 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) Fn 𝐵 → (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ↔ (𝑧 ∈ 𝐵 ∧ ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) ∈ 𝑦))) |
35 | 33, 34 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝐴) → (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ↔ (𝑧 ∈ 𝐵 ∧ ((𝑥 ∈ 𝐵 ↦ 𝐶)‘𝑧) ∈ 𝑦))) |
36 | 10 | fmpttd 6971 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐷):𝐵⟶ℝ) |
37 | 36 | ffnd 6585 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) |
38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↦ 𝐷) Fn 𝐵) |
39 | | elpreima 6917 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ↦ 𝐷) Fn 𝐵 → (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ↔ (𝑧 ∈ 𝐵 ∧ ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧) ∈ 𝑦))) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝐴) → (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ↔ (𝑧 ∈ 𝐵 ∧ ((𝑥 ∈ 𝐵 ↦ 𝐷)‘𝑧) ∈ 𝑦))) |
41 | 30, 35, 40 | 3bitr4d 310 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝐴) → (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ↔ 𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) |
42 | 41 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑧 ∈ 𝐴 → (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ↔ 𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)))) |
43 | 42 | con1d 145 |
. . . . . 6
⊢ (𝜑 → (¬ (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ↔ 𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) → 𝑧 ∈ 𝐴)) |
44 | 43 | abssdv 3998 |
. . . . 5
⊢ (𝜑 → {𝑧 ∣ ¬ (𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ↔ 𝑧 ∈ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))} ⊆ 𝐴) |
45 | 1, 44 | eqsstrid 3965 |
. . . 4
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) △ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ⊆ 𝐴) |
46 | 45 | difsymssdifssd 4184 |
. . 3
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ⊆ 𝐴) |
47 | | mbfeqa.1 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
48 | 46, 47 | sstrd 3927 |
. 2
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ⊆ ℝ) |
49 | | mbfeqa.2 |
. . 3
⊢ (𝜑 → (vol*‘𝐴) = 0) |
50 | | ovolssnul 24556 |
. . 3
⊢ ((((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) →
(vol*‘((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) = 0) |
51 | 46, 47, 49, 50 | syl3anc 1369 |
. 2
⊢ (𝜑 → (vol*‘((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) = 0) |
52 | | nulmbl 24604 |
. 2
⊢ ((((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ⊆ ℝ ∧ (vol*‘((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) = 0) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) |
53 | 48, 51, 52 | syl2anc 583 |
1
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) |