MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djueq1 Structured version   Visualization version   GIF version

Theorem djueq1 9941
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem djueq1
StepHypRef Expression
1 eqid 2726 . 2 𝐶 = 𝐶
2 djueq12 9940 . 2 ((𝐴 = 𝐵𝐶 = 𝐶) → (𝐴𝐶) = (𝐵𝐶))
31, 2mpan2 689 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  cdju 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-un 3951  df-opab 5208  df-xp 5680  df-dju 9937
This theorem is referenced by:  djulepw  10228
  Copyright terms: Public domain W3C validator