MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djueq1 Structured version   Visualization version   GIF version

Theorem djueq1 9521
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem djueq1
StepHypRef Expression
1 eqid 2737 . 2 𝐶 = 𝐶
2 djueq12 9520 . 2 ((𝐴 = 𝐵𝐶 = 𝐶) → (𝐴𝐶) = (𝐵𝐶))
31, 2mpan2 691 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  cdju 9514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-un 3871  df-opab 5116  df-xp 5557  df-dju 9517
This theorem is referenced by:  djulepw  9806
  Copyright terms: Public domain W3C validator