MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djueq2 Structured version   Visualization version   GIF version

Theorem djueq2 9901
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem djueq2
StepHypRef Expression
1 eqid 2733 . 2 𝐶 = 𝐶
2 djueq12 9899 . 2 ((𝐶 = 𝐶𝐴 = 𝐵) → (𝐶𝐴) = (𝐶𝐵))
31, 2mpan 689 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  cdju 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-opab 5212  df-xp 5683  df-dju 9896
This theorem is referenced by:  nnadju  10192
  Copyright terms: Public domain W3C validator