MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djueq2 Structured version   Visualization version   GIF version

Theorem djueq2 9947
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem djueq2
StepHypRef Expression
1 eqid 2736 . 2 𝐶 = 𝐶
2 djueq12 9945 . 2 ((𝐶 = 𝐶𝐴 = 𝐵) → (𝐶𝐴) = (𝐶𝐵))
31, 2mpan 690 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdju 9939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-opab 5205  df-xp 5690  df-dju 9942
This theorem is referenced by:  nnadju  10239
  Copyright terms: Public domain W3C validator