Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djueq2 | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
djueq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | djueq12 9662 | . 2 ⊢ ((𝐶 = 𝐶 ∧ 𝐴 = 𝐵) → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-opab 5137 df-xp 5595 df-dju 9659 |
This theorem is referenced by: nnadju 9953 |
Copyright terms: Public domain | W3C validator |