| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djueq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| djueq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | djueq12 9923 | . 2 ⊢ ((𝐶 = 𝐶 ∧ 𝐴 = 𝐵) → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊔ cdju 9917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-opab 5187 df-xp 5665 df-dju 9920 |
| This theorem is referenced by: nnadju 10217 |
| Copyright terms: Public domain | W3C validator |