Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djueq2 | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
djueq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | djueq12 9593 | . 2 ⊢ ((𝐶 = 𝐶 ∧ 𝐴 = 𝐵) → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-opab 5133 df-xp 5586 df-dju 9590 |
This theorem is referenced by: nnadju 9884 |
Copyright terms: Public domain | W3C validator |