MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulepw Structured version   Visualization version   GIF version

Theorem djulepw 9771
Description: If 𝐴 is idempotent under cardinal sum and 𝐵 is dominated by the power set of 𝐴, then so is the cardinal sum of 𝐴 and 𝐵. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
djulepw (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)

Proof of Theorem djulepw
StepHypRef Expression
1 djueq1 9486 . . 3 (𝐴 = ∅ → (𝐴𝐵) = (∅ ⊔ 𝐵))
21breq1d 5049 . 2 (𝐴 = ∅ → ((𝐴𝐵) ≼ 𝒫 𝐴 ↔ (∅ ⊔ 𝐵) ≼ 𝒫 𝐴))
3 relen 8609 . . . . . . . . 9 Rel ≈
43brrelex2i 5591 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴𝐴 ∈ V)
54adantr 484 . . . . . . 7 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ V)
6 canth2g 8778 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
7 sdomdom 8634 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
85, 6, 73syl 18 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
9 simpr 488 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
10 reldom 8610 . . . . . . . . 9 Rel ≼
1110brrelex1i 5590 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
12 djudom1 9761 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ∈ V) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
1311, 12sylan2 596 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
14 simpr 488 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
1510brrelex2i 5591 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
16 djudom2 9762 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1714, 15, 16syl2anc2 588 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 domtr 8659 . . . . . . 7 (((𝐴𝐵) ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1913, 17, 18syl2anc 587 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
208, 9, 19syl2anc 587 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
21 pwdju1 9769 . . . . . 6 (𝐴 ∈ V → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
225, 21syl 17 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
23 domentr 8665 . . . . 5 (((𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2420, 22, 23syl2anc 587 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2524adantr 484 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
26 0sdomg 8753 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
275, 26syl 17 . . . . . . . 8 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
2827biimpar 481 . . . . . . 7 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
29 0sdom1dom 8852 . . . . . . 7 (∅ ≺ 𝐴 ↔ 1o𝐴)
3028, 29sylib 221 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 1o𝐴)
315adantr 484 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
32 djudom2 9762 . . . . . 6 ((1o𝐴𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
3330, 31, 32syl2anc 587 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
34 simpll 767 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐴) ≈ 𝐴)
35 domentr 8665 . . . . 5 (((𝐴 ⊔ 1o) ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≼ 𝐴)
3633, 34, 35syl2anc 587 . . . 4 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ 𝐴)
37 pwdom 8776 . . . 4 ((𝐴 ⊔ 1o) ≼ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
3836, 37syl 17 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
39 domtr 8659 . . 3 (((𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
4025, 38, 39syl2anc 587 . 2 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 𝐴)
41 0ex 5185 . . . 4 ∅ ∈ V
4211adantl 485 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
43 djucomen 9756 . . . 4 ((∅ ∈ V ∧ 𝐵 ∈ V) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
4441, 42, 43sylancr 590 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
45 dju0en 9754 . . . . 5 (𝐵 ∈ V → (𝐵 ⊔ ∅) ≈ 𝐵)
46 domen1 8766 . . . . 5 ((𝐵 ⊔ ∅) ≈ 𝐵 → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
4742, 45, 463syl 18 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
489, 47mpbird 260 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵 ⊔ ∅) ≼ 𝒫 𝐴)
49 endomtr 8664 . . 3 (((∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅) ∧ (𝐵 ⊔ ∅) ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
5044, 48, 49syl2anc 587 . 2 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
512, 40, 50pm2.61ne 3017 1 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  Vcvv 3398  c0 4223  𝒫 cpw 4499   class class class wbr 5039  1oc1o 8173  cen 8601  cdom 8602  csdm 8603  cdju 9479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-dju 9482
This theorem is referenced by:  gchdomtri  10208
  Copyright terms: Public domain W3C validator