MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulepw Structured version   Visualization version   GIF version

Theorem djulepw 9879
Description: If 𝐴 is idempotent under cardinal sum and 𝐵 is dominated by the power set of 𝐴, then so is the cardinal sum of 𝐴 and 𝐵. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
djulepw (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)

Proof of Theorem djulepw
StepHypRef Expression
1 djueq1 9594 . . 3 (𝐴 = ∅ → (𝐴𝐵) = (∅ ⊔ 𝐵))
21breq1d 5080 . 2 (𝐴 = ∅ → ((𝐴𝐵) ≼ 𝒫 𝐴 ↔ (∅ ⊔ 𝐵) ≼ 𝒫 𝐴))
3 relen 8696 . . . . . . . . 9 Rel ≈
43brrelex2i 5635 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴𝐴 ∈ V)
54adantr 480 . . . . . . 7 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ V)
6 canth2g 8867 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
7 sdomdom 8723 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
85, 6, 73syl 18 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
9 simpr 484 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
10 reldom 8697 . . . . . . . . 9 Rel ≼
1110brrelex1i 5634 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
12 djudom1 9869 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ∈ V) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
1311, 12sylan2 592 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
14 simpr 484 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
1510brrelex2i 5635 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
16 djudom2 9870 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1714, 15, 16syl2anc2 584 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 domtr 8748 . . . . . . 7 (((𝐴𝐵) ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1913, 17, 18syl2anc 583 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
208, 9, 19syl2anc 583 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
21 pwdju1 9877 . . . . . 6 (𝐴 ∈ V → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
225, 21syl 17 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
23 domentr 8754 . . . . 5 (((𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2420, 22, 23syl2anc 583 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2524adantr 480 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
26 0sdomg 8842 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
275, 26syl 17 . . . . . . . 8 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
2827biimpar 477 . . . . . . 7 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
29 0sdom1dom 8950 . . . . . . 7 (∅ ≺ 𝐴 ↔ 1o𝐴)
3028, 29sylib 217 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 1o𝐴)
315adantr 480 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
32 djudom2 9870 . . . . . 6 ((1o𝐴𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
3330, 31, 32syl2anc 583 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
34 simpll 763 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐴) ≈ 𝐴)
35 domentr 8754 . . . . 5 (((𝐴 ⊔ 1o) ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≼ 𝐴)
3633, 34, 35syl2anc 583 . . . 4 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ 𝐴)
37 pwdom 8865 . . . 4 ((𝐴 ⊔ 1o) ≼ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
3836, 37syl 17 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
39 domtr 8748 . . 3 (((𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
4025, 38, 39syl2anc 583 . 2 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 𝐴)
41 0ex 5226 . . . 4 ∅ ∈ V
4211adantl 481 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
43 djucomen 9864 . . . 4 ((∅ ∈ V ∧ 𝐵 ∈ V) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
4441, 42, 43sylancr 586 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
45 dju0en 9862 . . . . 5 (𝐵 ∈ V → (𝐵 ⊔ ∅) ≈ 𝐵)
46 domen1 8855 . . . . 5 ((𝐵 ⊔ ∅) ≈ 𝐵 → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
4742, 45, 463syl 18 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
489, 47mpbird 256 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵 ⊔ ∅) ≼ 𝒫 𝐴)
49 endomtr 8753 . . 3 (((∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅) ∧ (𝐵 ⊔ ∅) ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
5044, 48, 49syl2anc 583 . 2 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
512, 40, 50pm2.61ne 3029 1 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  𝒫 cpw 4530   class class class wbr 5070  1oc1o 8260  cen 8688  cdom 8689  csdm 8690  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-dju 9590
This theorem is referenced by:  gchdomtri  10316
  Copyright terms: Public domain W3C validator