MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulepw Structured version   Visualization version   GIF version

Theorem djulepw 10222
Description: If 𝐴 is idempotent under cardinal sum and 𝐵 is dominated by the power set of 𝐴, then so is the cardinal sum of 𝐴 and 𝐵. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
djulepw (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)

Proof of Theorem djulepw
StepHypRef Expression
1 djueq1 9935 . . 3 (𝐴 = ∅ → (𝐴𝐵) = (∅ ⊔ 𝐵))
21breq1d 5159 . 2 (𝐴 = ∅ → ((𝐴𝐵) ≼ 𝒫 𝐴 ↔ (∅ ⊔ 𝐵) ≼ 𝒫 𝐴))
3 relen 8969 . . . . . . . . 9 Rel ≈
43brrelex2i 5735 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴𝐴 ∈ V)
54adantr 479 . . . . . . 7 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ V)
6 canth2g 9159 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
7 sdomdom 9001 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
85, 6, 73syl 18 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
9 simpr 483 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
10 reldom 8970 . . . . . . . . 9 Rel ≼
1110brrelex1i 5734 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
12 djudom1 10212 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ∈ V) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
1311, 12sylan2 591 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
14 simpr 483 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
1510brrelex2i 5735 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
16 djudom2 10213 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1714, 15, 16syl2anc2 583 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 domtr 9028 . . . . . . 7 (((𝐴𝐵) ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1913, 17, 18syl2anc 582 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
208, 9, 19syl2anc 582 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
21 pwdju1 10220 . . . . . 6 (𝐴 ∈ V → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
225, 21syl 17 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
23 domentr 9034 . . . . 5 (((𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2420, 22, 23syl2anc 582 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2524adantr 479 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
26 0sdomg 9132 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
275, 26syl 17 . . . . . . . 8 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
2827biimpar 476 . . . . . . 7 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
29 0sdom1dom 9266 . . . . . . 7 (∅ ≺ 𝐴 ↔ 1o𝐴)
3028, 29sylib 217 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 1o𝐴)
315adantr 479 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
32 djudom2 10213 . . . . . 6 ((1o𝐴𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
3330, 31, 32syl2anc 582 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
34 simpll 765 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐴) ≈ 𝐴)
35 domentr 9034 . . . . 5 (((𝐴 ⊔ 1o) ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≼ 𝐴)
3633, 34, 35syl2anc 582 . . . 4 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ 𝐴)
37 pwdom 9157 . . . 4 ((𝐴 ⊔ 1o) ≼ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
3836, 37syl 17 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
39 domtr 9028 . . 3 (((𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
4025, 38, 39syl2anc 582 . 2 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 𝐴)
41 0ex 5308 . . . 4 ∅ ∈ V
4211adantl 480 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
43 djucomen 10207 . . . 4 ((∅ ∈ V ∧ 𝐵 ∈ V) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
4441, 42, 43sylancr 585 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
45 dju0en 10205 . . . . 5 (𝐵 ∈ V → (𝐵 ⊔ ∅) ≈ 𝐵)
46 domen1 9147 . . . . 5 ((𝐵 ⊔ ∅) ≈ 𝐵 → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
4742, 45, 463syl 18 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
489, 47mpbird 256 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵 ⊔ ∅) ≼ 𝒫 𝐴)
49 endomtr 9033 . . 3 (((∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅) ∧ (𝐵 ⊔ ∅) ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
5044, 48, 49syl2anc 582 . 2 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
512, 40, 50pm2.61ne 3016 1 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  c0 4322  𝒫 cpw 4604   class class class wbr 5149  1oc1o 8480  cen 8961  cdom 8962  csdm 8963  cdju 9928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-dju 9931
This theorem is referenced by:  gchdomtri  10659
  Copyright terms: Public domain W3C validator