MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulepw Structured version   Visualization version   GIF version

Theorem djulepw 10183
Description: If 𝐴 is idempotent under cardinal sum and 𝐵 is dominated by the power set of 𝐴, then so is the cardinal sum of 𝐴 and 𝐵. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
djulepw (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)

Proof of Theorem djulepw
StepHypRef Expression
1 djueq1 9896 . . 3 (𝐴 = ∅ → (𝐴𝐵) = (∅ ⊔ 𝐵))
21breq1d 5157 . 2 (𝐴 = ∅ → ((𝐴𝐵) ≼ 𝒫 𝐴 ↔ (∅ ⊔ 𝐵) ≼ 𝒫 𝐴))
3 relen 8940 . . . . . . . . 9 Rel ≈
43brrelex2i 5731 . . . . . . . 8 ((𝐴𝐴) ≈ 𝐴𝐴 ∈ V)
54adantr 481 . . . . . . 7 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ∈ V)
6 canth2g 9127 . . . . . . 7 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
7 sdomdom 8972 . . . . . . 7 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
85, 6, 73syl 18 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐴 ≼ 𝒫 𝐴)
9 simpr 485 . . . . . 6 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
10 reldom 8941 . . . . . . . . 9 Rel ≼
1110brrelex1i 5730 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴𝐵 ∈ V)
12 djudom1 10173 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ∈ V) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
1311, 12sylan2 593 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴𝐵))
14 simpr 485 . . . . . . . 8 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ≼ 𝒫 𝐴)
1510brrelex2i 5731 . . . . . . . 8 (𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
16 djudom2 10174 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1714, 15, 16syl2anc2 585 . . . . . . 7 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
18 domtr 8999 . . . . . . 7 (((𝐴𝐵) ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴)) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
1913, 17, 18syl2anc 584 . . . . . 6 ((𝐴 ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
208, 9, 19syl2anc 584 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴))
21 pwdju1 10181 . . . . . 6 (𝐴 ∈ V → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
225, 21syl 17 . . . . 5 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
23 domentr 9005 . . . . 5 (((𝐴𝐵) ≼ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2420, 22, 23syl2anc 584 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
2524adantr 481 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o))
26 0sdomg 9100 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
275, 26syl 17 . . . . . . . 8 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ≺ 𝐴𝐴 ≠ ∅))
2827biimpar 478 . . . . . . 7 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
29 0sdom1dom 9234 . . . . . . 7 (∅ ≺ 𝐴 ↔ 1o𝐴)
3028, 29sylib 217 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 1o𝐴)
315adantr 481 . . . . . 6 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
32 djudom2 10174 . . . . . 6 ((1o𝐴𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
3330, 31, 32syl2anc 584 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
34 simpll 765 . . . . 5 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐴) ≈ 𝐴)
35 domentr 9005 . . . . 5 (((𝐴 ⊔ 1o) ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≈ 𝐴) → (𝐴 ⊔ 1o) ≼ 𝐴)
3633, 34, 35syl2anc 584 . . . 4 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴 ⊔ 1o) ≼ 𝐴)
37 pwdom 9125 . . . 4 ((𝐴 ⊔ 1o) ≼ 𝐴 → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
3836, 37syl 17 . . 3 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
39 domtr 8999 . . 3 (((𝐴𝐵) ≼ 𝒫 (𝐴 ⊔ 1o) ∧ 𝒫 (𝐴 ⊔ 1o) ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
4025, 38, 39syl2anc 584 . 2 ((((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) ∧ 𝐴 ≠ ∅) → (𝐴𝐵) ≼ 𝒫 𝐴)
41 0ex 5306 . . . 4 ∅ ∈ V
4211adantl 482 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → 𝐵 ∈ V)
43 djucomen 10168 . . . 4 ((∅ ∈ V ∧ 𝐵 ∈ V) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
4441, 42, 43sylancr 587 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅))
45 dju0en 10166 . . . . 5 (𝐵 ∈ V → (𝐵 ⊔ ∅) ≈ 𝐵)
46 domen1 9115 . . . . 5 ((𝐵 ⊔ ∅) ≈ 𝐵 → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
4742, 45, 463syl 18 . . . 4 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → ((𝐵 ⊔ ∅) ≼ 𝒫 𝐴𝐵 ≼ 𝒫 𝐴))
489, 47mpbird 256 . . 3 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐵 ⊔ ∅) ≼ 𝒫 𝐴)
49 endomtr 9004 . . 3 (((∅ ⊔ 𝐵) ≈ (𝐵 ⊔ ∅) ∧ (𝐵 ⊔ ∅) ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
5044, 48, 49syl2anc 584 . 2 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (∅ ⊔ 𝐵) ≼ 𝒫 𝐴)
512, 40, 50pm2.61ne 3027 1 (((𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  c0 4321  𝒫 cpw 4601   class class class wbr 5147  1oc1o 8455  cen 8932  cdom 8933  csdm 8934  cdju 9889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-dju 9892
This theorem is referenced by:  gchdomtri  10620
  Copyright terms: Public domain W3C validator