Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfald2 | Structured version Visualization version GIF version |
Description: Variation on nfald 2336 which adds the hypothesis that 𝑥 and 𝑦 are distinct in the inner subproof. Usage of this theorem is discouraged because it depends on ax-13 2379. Check out nfald 2336 for a version requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfald2.1 | ⊢ Ⅎ𝑦𝜑 |
nfald2.2 | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfald2 | ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfald2.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | nfnae 2445 | . . . . 5 ⊢ Ⅎ𝑦 ¬ ∀𝑥 𝑥 = 𝑦 | |
3 | 1, 2 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
4 | nfald2.2 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | |
5 | 3, 4 | nfald 2336 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥∀𝑦𝜓) |
6 | 5 | ex 416 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑦𝜓)) |
7 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑦∀𝑦𝜓 | |
8 | biidd 265 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 ↔ ∀𝑦𝜓)) | |
9 | 8 | drnf1 2454 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥∀𝑦𝜓 ↔ Ⅎ𝑦∀𝑦𝜓)) |
10 | 7, 9 | mpbiri 261 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑦𝜓) |
11 | 6, 10 | pm2.61d2 184 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1536 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-11 2158 ax-12 2175 ax-13 2379 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 |
This theorem is referenced by: nfexd2 2457 dvelimf 2459 nfmod2 2576 nfrald 3152 nfiotad 6299 nfixp 8499 |
Copyright terms: Public domain | W3C validator |