MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfabd2 Structured version   Visualization version   GIF version

Theorem nfabd2 2921
Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2363. (Contributed by Mario Carneiro, 8-Oct-2016.) (Proof shortened by Wolf Lammen, 10-May-2023.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfabd2.1 𝑦𝜑
nfabd2.2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfabd2 (𝜑𝑥{𝑦𝜓})

Proof of Theorem nfabd2
StepHypRef Expression
1 nfabd2.1 . . . . 5 𝑦𝜑
2 nfnae 2425 . . . . 5 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
31, 2nfan 1894 . . . 4 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
4 nfabd2.2 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
53, 4nfabd 2920 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥{𝑦𝜓})
65ex 412 . 2 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥{𝑦𝜓}))
7 nfab1 2897 . . 3 𝑦{𝑦𝜓}
8 eqidd 2725 . . . 4 (∀𝑥 𝑥 = 𝑦 → {𝑦𝜓} = {𝑦𝜓})
98drnfc1 2914 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝑥{𝑦𝜓} ↔ 𝑦{𝑦𝜓}))
107, 9mpbiri 258 . 2 (∀𝑥 𝑥 = 𝑦𝑥{𝑦𝜓})
116, 10pm2.61d2 181 1 (𝜑𝑥{𝑦𝜓})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1531  wnf 1777  {cab 2701  wnfc 2875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2363  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-nfc 2877
This theorem is referenced by:  nfrab  3464  nfixp  8908
  Copyright terms: Public domain W3C validator