| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfabd2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by Mario Carneiro, 8-Oct-2016.) (Proof shortened by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfabd2.1 | ⊢ Ⅎ𝑦𝜑 |
| nfabd2.2 | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfabd2 | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfabd2.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfnae 2437 | . . . . 5 ⊢ Ⅎ𝑦 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 3 | 1, 2 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
| 4 | nfabd2.2 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfabd 2920 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| 6 | 5 | ex 412 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥{𝑦 ∣ 𝜓})) |
| 7 | nfab1 2899 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜓} | |
| 8 | eqidd 2735 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑦 ∣ 𝜓} = {𝑦 ∣ 𝜓}) | |
| 9 | 8 | drnfc1 2917 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥{𝑦 ∣ 𝜓} ↔ Ⅎ𝑦{𝑦 ∣ 𝜓})) |
| 10 | 7, 9 | mpbiri 258 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| 11 | 6, 10 | pm2.61d2 181 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 Ⅎwnf 1782 {cab 2712 Ⅎwnfc 2882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-nfc 2884 |
| This theorem is referenced by: nfrab 3462 nfixp 8940 |
| Copyright terms: Public domain | W3C validator |