Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvelimf | Structured version Visualization version GIF version |
Description: Version of dvelimv 2452 without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvelimf.1 | ⊢ Ⅎ𝑥𝜑 |
dvelimf.2 | ⊢ Ⅎ𝑧𝜓 |
dvelimf.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dvelimf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelimf.2 | . . . 4 ⊢ Ⅎ𝑧𝜓 | |
2 | dvelimf.3 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | equsal 2417 | . . 3 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜑) ↔ 𝜓) |
4 | 3 | bicomi 223 | . 2 ⊢ (𝜓 ↔ ∀𝑧(𝑧 = 𝑦 → 𝜑)) |
5 | nfnae 2434 | . . 3 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
6 | nfeqf 2381 | . . . . 5 ⊢ ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦) | |
7 | 6 | ancoms 458 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 = 𝑦) |
8 | dvelimf.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
9 | 8 | a1i 11 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝜑) |
10 | 7, 9 | nfimd 1898 | . . 3 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑧 = 𝑦 → 𝜑)) |
11 | 5, 10 | nfald2 2445 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜑)) |
12 | 4, 11 | nfxfrd 1857 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: dvelimdf 2449 dvelimh 2450 dvelimnf 2453 |
Copyright terms: Public domain | W3C validator |