Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvelimf Structured version   Visualization version   GIF version

Theorem dvelimf 2470
 Description: Version of dvelimv 2474 without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2390. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvelimf.1 𝑥𝜑
dvelimf.2 𝑧𝜓
dvelimf.3 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelimf (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)

Proof of Theorem dvelimf
StepHypRef Expression
1 dvelimf.2 . . . 4 𝑧𝜓
2 dvelimf.3 . . . 4 (𝑧 = 𝑦 → (𝜑𝜓))
31, 2equsal 2439 . . 3 (∀𝑧(𝑧 = 𝑦𝜑) ↔ 𝜓)
43bicomi 226 . 2 (𝜓 ↔ ∀𝑧(𝑧 = 𝑦𝜑))
5 nfnae 2456 . . 3 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
6 nfeqf 2399 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦)
76ancoms 461 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 = 𝑦)
8 dvelimf.1 . . . . 5 𝑥𝜑
98a1i 11 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝜑)
107, 9nfimd 1895 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑧 = 𝑦𝜑))
115, 10nfald2 2467 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑧(𝑧 = 𝑦𝜑))
124, 11nfxfrd 1854 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398  ∀wal 1535  Ⅎwnf 1784 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-11 2161  ax-12 2177  ax-13 2390 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785 This theorem is referenced by:  dvelimdf  2471  dvelimh  2472  dvelimnf  2475
 Copyright terms: Public domain W3C validator