| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvelimexcasei | Structured version Visualization version GIF version | ||
| Description: Eliminate a disjoint variable condition from an existentially quantified statement using cases. Inference form of dvelimexcased 35075. See axnulg 35090 for an example of its use. (Contributed by BTernaryTau, 31-Jul-2025.) |
| Ref | Expression |
|---|---|
| dvelimexcasei.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
| dvelimexcasei.2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜒) |
| dvelimexcasei.3 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → (𝜑 → 𝜒))) |
| dvelimexcasei.4 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜓 → 𝜒)) |
| dvelimexcasei.5 | ⊢ ∃𝑧𝜑 |
| dvelimexcasei.6 | ⊢ ∃𝑥𝜓 |
| Ref | Expression |
|---|---|
| dvelimexcasei | ⊢ ∃𝑥𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfvd 1915 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧⊤) | |
| 3 | dvelimexcasei.1 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜑) |
| 5 | dvelimexcasei.2 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜒) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑧𝜒) |
| 7 | dvelimexcasei.3 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑥 → (𝜑 → 𝜒))) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑧 = 𝑥 → (𝜑 → 𝜒))) |
| 9 | dvelimexcasei.4 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜓 → 𝜒)) | |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((⊤ ∧ ∀𝑥 𝑥 = 𝑦) → (𝜓 → 𝜒)) |
| 11 | dvelimexcasei.5 | . . . 4 ⊢ ∃𝑧𝜑 | |
| 12 | 11 | a1i 11 | . . 3 ⊢ (⊤ → ∃𝑧𝜑) |
| 13 | dvelimexcasei.6 | . . . 4 ⊢ ∃𝑥𝜓 | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (⊤ → ∃𝑥𝜓) |
| 15 | 1, 2, 4, 6, 8, 10, 12, 14 | dvelimexcased 35075 | . 2 ⊢ (⊤ → ∃𝑥𝜒) |
| 16 | 15 | mptru 1547 | 1 ⊢ ∃𝑥𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ⊤wtru 1541 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: axsepg2 35080 axsepg2ALT 35081 axnulg 35090 |
| Copyright terms: Public domain | W3C validator |