Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e21 Structured version   Visualization version   GIF version

Theorem e21 42239
Description: A virtual deduction elimination rule (see syl6ci 71). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e21.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e21.2 (   𝜑   ▶   𝜃   )
e21.3 (𝜒 → (𝜃𝜏))
Assertion
Ref Expression
e21 (   𝜑   ,   𝜓   ▶   𝜏   )

Proof of Theorem e21
StepHypRef Expression
1 e21.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e21.2 . . 3 (   𝜑   ▶   𝜃   )
32vd12 42109 . 2 (   𝜑   ,   𝜓   ▶   𝜃   )
4 e21.3 . 2 (𝜒 → (𝜃𝜏))
51, 3, 4e22 42180 1 (   𝜑   ,   𝜓   ▶   𝜏   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42078  (   wvd2 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-vd1 42079  df-vd2 42087
This theorem is referenced by:  e21an  42240  en3lplem1VD  42352  exbiriVD  42363  syl5impVD  42372  sbcim2gVD  42384  onfrALTlem3VD  42396  onfrALTlem2VD  42398  hbimpgVD  42413  ax6e2eqVD  42416  vk15.4jVD  42423
  Copyright terms: Public domain W3C validator