| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e21 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule (see syl6ci 71). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e21.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e21.2 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| e21.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| e21 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e21.1 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | e21.2 | . . 3 ⊢ ( 𝜑 ▶ 𝜃 ) | |
| 3 | 2 | vd12 44592 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| 4 | e21.3 | . 2 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 5 | 1, 3, 4 | e22 44663 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44561 ( wvd2 44569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44562 df-vd2 44570 |
| This theorem is referenced by: e21an 44722 en3lplem1VD 44834 exbiriVD 44845 syl5impVD 44854 sbcim2gVD 44866 onfrALTlem3VD 44878 onfrALTlem2VD 44880 hbimpgVD 44895 ax6e2eqVD 44898 vk15.4jVD 44905 |
| Copyright terms: Public domain | W3C validator |