![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | ⊢ (𝜑 → 𝜓) |
embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: dfsb1 2484 dfmoeu 2534 disj 4456 elALT2 5375 fpropnf1 7287 findcard2d 9205 cantnflem1 9727 ttrclss 9758 ackbij1lem16 10272 fin1a2lem10 10447 inar1 10813 grur1a 10857 sqrt2irr 16282 lcmf 16667 lcmfunsnlem 16675 exprmfct 16738 pockthg 16940 prmgaplem5 17089 prmgaplem6 17090 drsdirfi 18363 obslbs 21768 mdetunilem9 22642 iscnp4 23287 isreg2 23401 dfconn2 23443 1stccnp 23486 flftg 24020 cnpfcf 24065 tsmsxp 24179 nmoleub 24768 vitalilem2 25658 vitalilem5 25661 c1lip1 26051 aalioulem6 26394 jensen 27047 2sqlem6 27482 dchrisumlem3 27550 pntlem3 27668 finsumvtxdg2sstep 29582 dfufd2lem 33557 bnj849 34918 cvmlift2lem1 35287 cvmlift2lem12 35299 mclsax 35554 nn0prpwlem 36305 matunitlindflem1 37603 poimirlem30 37637 mapdordlem2 41620 eu6w 42663 iccelpart 47358 ichreuopeq 47398 sbgoldbalt 47706 sbgoldbm 47709 evengpop3 47723 evengpoap3 47724 bgoldbtbnd 47734 lindslinindsimp1 48303 iscnrm3r 48745 iscnrm3l 48748 |
Copyright terms: Public domain | W3C validator |