![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | ⊢ (𝜑 → 𝜓) |
embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: dfsb1 2475 dfmoeu 2525 disj 4443 elALT2 5363 fpropnf1 7271 findcard2d 9182 cantnflem1 9704 ttrclss 9735 ackbij1lem16 10250 fin1a2lem10 10424 inar1 10790 grur1a 10834 sqrt2irr 16217 lcmf 16595 lcmfunsnlem 16603 exprmfct 16666 pockthg 16866 prmgaplem5 17015 prmgaplem6 17016 drsdirfi 18288 obslbs 21651 mdetunilem9 22509 iscnp4 23154 isreg2 23268 dfconn2 23310 1stccnp 23353 flftg 23887 cnpfcf 23932 tsmsxp 24046 nmoleub 24635 vitalilem2 25525 vitalilem5 25528 c1lip1 25917 aalioulem6 26259 jensen 26908 2sqlem6 27343 dchrisumlem3 27411 pntlem3 27529 finsumvtxdg2sstep 29350 bnj849 34492 cvmlift2lem1 34848 cvmlift2lem12 34860 mclsax 35115 nn0prpwlem 35742 matunitlindflem1 37024 poimirlem30 37058 mapdordlem2 41047 iccelpart 46696 ichreuopeq 46736 sbgoldbalt 47044 sbgoldbm 47047 evengpop3 47061 evengpoap3 47062 bgoldbtbnd 47072 lindslinindsimp1 47448 iscnrm3r 47890 iscnrm3l 47893 |
Copyright terms: Public domain | W3C validator |