Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | ⊢ (𝜑 → 𝜓) |
embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: dfsb1 2483 dfmoeu 2534 disj 4387 elALT2 5301 fpropnf1 7172 findcard2d 8987 cantnflem1 9491 ttrclss 9522 ackbij1lem16 10037 fin1a2lem10 10211 inar1 10577 grur1a 10621 sqrt2irr 16003 lcmf 16383 lcmfunsnlem 16391 exprmfct 16454 pockthg 16652 prmgaplem5 16801 prmgaplem6 16802 drsdirfi 18068 obslbs 20982 mdetunilem9 21814 iscnp4 22459 isreg2 22573 dfconn2 22615 1stccnp 22658 flftg 23192 cnpfcf 23237 tsmsxp 23351 nmoleub 23940 vitalilem2 24818 vitalilem5 24821 c1lip1 25206 aalioulem6 25542 jensen 26183 2sqlem6 26616 dchrisumlem3 26684 pntlem3 26802 finsumvtxdg2sstep 27961 bnj849 32950 cvmlift2lem1 33309 cvmlift2lem12 33321 mclsax 33576 nn0prpwlem 34556 matunitlindflem1 35817 poimirlem30 35851 mapdordlem2 39693 iccelpart 44943 ichreuopeq 44983 sbgoldbalt 45291 sbgoldbm 45294 evengpop3 45308 evengpoap3 45309 bgoldbtbnd 45319 lindslinindsimp1 45856 iscnrm3r 46300 iscnrm3l 46303 |
Copyright terms: Public domain | W3C validator |