![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | ⊢ (𝜑 → 𝜓) |
embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: dfsb1 2489 dfmoeu 2539 disj 4473 elALT2 5387 fpropnf1 7304 findcard2d 9232 cantnflem1 9758 ttrclss 9789 ackbij1lem16 10303 fin1a2lem10 10478 inar1 10844 grur1a 10888 sqrt2irr 16297 lcmf 16680 lcmfunsnlem 16688 exprmfct 16751 pockthg 16953 prmgaplem5 17102 prmgaplem6 17103 drsdirfi 18375 obslbs 21773 mdetunilem9 22647 iscnp4 23292 isreg2 23406 dfconn2 23448 1stccnp 23491 flftg 24025 cnpfcf 24070 tsmsxp 24184 nmoleub 24773 vitalilem2 25663 vitalilem5 25666 c1lip1 26056 aalioulem6 26397 jensen 27050 2sqlem6 27485 dchrisumlem3 27553 pntlem3 27671 finsumvtxdg2sstep 29585 dfufd2lem 33542 bnj849 34901 cvmlift2lem1 35270 cvmlift2lem12 35282 mclsax 35537 nn0prpwlem 36288 matunitlindflem1 37576 poimirlem30 37610 mapdordlem2 41594 eu6w 42631 iccelpart 47307 ichreuopeq 47347 sbgoldbalt 47655 sbgoldbm 47658 evengpop3 47672 evengpoap3 47673 bgoldbtbnd 47683 lindslinindsimp1 48186 iscnrm3r 48628 iscnrm3l 48631 |
Copyright terms: Public domain | W3C validator |