![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | ⊢ (𝜑 → 𝜓) |
embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: dfsb1 2481 dfmoeu 2531 disj 4448 elALT2 5368 fpropnf1 7266 findcard2d 9166 cantnflem1 9684 ttrclss 9715 ackbij1lem16 10230 fin1a2lem10 10404 inar1 10770 grur1a 10814 sqrt2irr 16192 lcmf 16570 lcmfunsnlem 16578 exprmfct 16641 pockthg 16839 prmgaplem5 16988 prmgaplem6 16989 drsdirfi 18258 obslbs 21285 mdetunilem9 22122 iscnp4 22767 isreg2 22881 dfconn2 22923 1stccnp 22966 flftg 23500 cnpfcf 23545 tsmsxp 23659 nmoleub 24248 vitalilem2 25126 vitalilem5 25129 c1lip1 25514 aalioulem6 25850 jensen 26493 2sqlem6 26926 dchrisumlem3 26994 pntlem3 27112 finsumvtxdg2sstep 28806 bnj849 33936 cvmlift2lem1 34293 cvmlift2lem12 34305 mclsax 34560 nn0prpwlem 35207 matunitlindflem1 36484 poimirlem30 36518 mapdordlem2 40508 iccelpart 46101 ichreuopeq 46141 sbgoldbalt 46449 sbgoldbm 46452 evengpop3 46466 evengpoap3 46467 bgoldbtbnd 46477 lindslinindsimp1 47138 iscnrm3r 47581 iscnrm3l 47584 |
Copyright terms: Public domain | W3C validator |