| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (𝜑 → 𝜓) |
| embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: dfsb1 2479 dfmoeu 2529 disj 4403 elALT2 5311 fpropnf1 7208 findcard2d 9090 cantnflem1 9604 ttrclss 9635 ackbij1lem16 10147 fin1a2lem10 10322 inar1 10688 grur1a 10732 sqrt2irr 16176 lcmf 16562 lcmfunsnlem 16570 exprmfct 16633 pockthg 16836 prmgaplem5 16985 prmgaplem6 16986 drsdirfi 18229 obslbs 21655 mdetunilem9 22523 iscnp4 23166 isreg2 23280 dfconn2 23322 1stccnp 23365 flftg 23899 cnpfcf 23944 tsmsxp 24058 nmoleub 24635 vitalilem2 25526 vitalilem5 25529 c1lip1 25918 aalioulem6 26261 jensen 26915 2sqlem6 27350 dchrisumlem3 27418 pntlem3 27536 finsumvtxdg2sstep 29513 dfufd2lem 33496 bnj849 34891 cvmlift2lem1 35274 cvmlift2lem12 35286 mclsax 35541 nn0prpwlem 36295 matunitlindflem1 37595 poimirlem30 37629 mapdordlem2 41616 eu6w 42649 iccelpart 47418 ichreuopeq 47458 sbgoldbalt 47766 sbgoldbm 47769 evengpop3 47783 evengpoap3 47784 bgoldbtbnd 47794 lindslinindsimp1 48443 iscnrm3r 48933 iscnrm3l 48936 |
| Copyright terms: Public domain | W3C validator |