| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (𝜑 → 𝜓) |
| embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: dfsb1 2485 dfmoeu 2535 disj 4425 elALT2 5339 fpropnf1 7259 findcard2d 9178 cantnflem1 9701 ttrclss 9732 ackbij1lem16 10246 fin1a2lem10 10421 inar1 10787 grur1a 10831 sqrt2irr 16265 lcmf 16650 lcmfunsnlem 16658 exprmfct 16721 pockthg 16924 prmgaplem5 17073 prmgaplem6 17074 drsdirfi 18315 obslbs 21688 mdetunilem9 22556 iscnp4 23199 isreg2 23313 dfconn2 23355 1stccnp 23398 flftg 23932 cnpfcf 23977 tsmsxp 24091 nmoleub 24668 vitalilem2 25560 vitalilem5 25563 c1lip1 25952 aalioulem6 26295 jensen 26949 2sqlem6 27384 dchrisumlem3 27452 pntlem3 27570 finsumvtxdg2sstep 29475 dfufd2lem 33510 bnj849 34902 cvmlift2lem1 35270 cvmlift2lem12 35282 mclsax 35537 nn0prpwlem 36286 matunitlindflem1 37586 poimirlem30 37620 mapdordlem2 41602 eu6w 42646 iccelpart 47395 ichreuopeq 47435 sbgoldbalt 47743 sbgoldbm 47746 evengpop3 47760 evengpoap3 47761 bgoldbtbnd 47771 lindslinindsimp1 48381 iscnrm3r 48870 iscnrm3l 48873 |
| Copyright terms: Public domain | W3C validator |