| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (𝜑 → 𝜓) |
| embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: dfsb1 2481 dfmoeu 2531 elALT2 5307 fpropnf1 7201 findcard2d 9076 cantnflem1 9579 ttrclss 9610 ackbij1lem16 10122 fin1a2lem10 10297 inar1 10663 grur1a 10707 sqrt2irr 16155 lcmf 16541 lcmfunsnlem 16549 exprmfct 16612 pockthg 16815 prmgaplem5 16964 prmgaplem6 16965 drsdirfi 18208 obslbs 21665 mdetunilem9 22533 iscnp4 23176 isreg2 23290 dfconn2 23332 1stccnp 23375 flftg 23909 cnpfcf 23954 tsmsxp 24068 nmoleub 24644 vitalilem2 25535 vitalilem5 25538 c1lip1 25927 aalioulem6 26270 jensen 26924 2sqlem6 27359 dchrisumlem3 27427 pntlem3 27545 finsumvtxdg2sstep 29526 dfufd2lem 33509 bnj849 34932 cvmlift2lem1 35334 cvmlift2lem12 35346 mclsax 35601 nn0prpwlem 36355 matunitlindflem1 37655 poimirlem30 37689 mapdordlem2 41675 eu6w 42708 iccelpart 47463 ichreuopeq 47503 sbgoldbalt 47811 sbgoldbm 47814 evengpop3 47828 evengpoap3 47829 bgoldbtbnd 47839 lindslinindsimp1 48488 iscnrm3r 48978 iscnrm3l 48981 |
| Copyright terms: Public domain | W3C validator |