| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (𝜑 → 𝜓) |
| embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: dfsb1 2485 dfmoeu 2535 disj 4425 elALT2 5339 fpropnf1 7260 findcard2d 9180 cantnflem1 9703 ttrclss 9734 ackbij1lem16 10248 fin1a2lem10 10423 inar1 10789 grur1a 10833 sqrt2irr 16267 lcmf 16652 lcmfunsnlem 16660 exprmfct 16723 pockthg 16926 prmgaplem5 17075 prmgaplem6 17076 drsdirfi 18317 obslbs 21690 mdetunilem9 22558 iscnp4 23201 isreg2 23315 dfconn2 23357 1stccnp 23400 flftg 23934 cnpfcf 23979 tsmsxp 24093 nmoleub 24670 vitalilem2 25562 vitalilem5 25565 c1lip1 25954 aalioulem6 26297 jensen 26951 2sqlem6 27386 dchrisumlem3 27454 pntlem3 27572 finsumvtxdg2sstep 29529 dfufd2lem 33564 bnj849 34956 cvmlift2lem1 35324 cvmlift2lem12 35336 mclsax 35591 nn0prpwlem 36340 matunitlindflem1 37640 poimirlem30 37674 mapdordlem2 41656 eu6w 42699 iccelpart 47447 ichreuopeq 47487 sbgoldbalt 47795 sbgoldbm 47798 evengpop3 47812 evengpoap3 47813 bgoldbtbnd 47823 lindslinindsimp1 48433 iscnrm3r 48922 iscnrm3l 48925 |
| Copyright terms: Public domain | W3C validator |