| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (𝜑 → 𝜓) |
| embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: dfsb1 2479 dfmoeu 2529 disj 4413 elALT2 5324 fpropnf1 7242 findcard2d 9130 cantnflem1 9642 ttrclss 9673 ackbij1lem16 10187 fin1a2lem10 10362 inar1 10728 grur1a 10772 sqrt2irr 16217 lcmf 16603 lcmfunsnlem 16611 exprmfct 16674 pockthg 16877 prmgaplem5 17026 prmgaplem6 17027 drsdirfi 18266 obslbs 21639 mdetunilem9 22507 iscnp4 23150 isreg2 23264 dfconn2 23306 1stccnp 23349 flftg 23883 cnpfcf 23928 tsmsxp 24042 nmoleub 24619 vitalilem2 25510 vitalilem5 25513 c1lip1 25902 aalioulem6 26245 jensen 26899 2sqlem6 27334 dchrisumlem3 27402 pntlem3 27520 finsumvtxdg2sstep 29477 dfufd2lem 33520 bnj849 34915 cvmlift2lem1 35289 cvmlift2lem12 35301 mclsax 35556 nn0prpwlem 36310 matunitlindflem1 37610 poimirlem30 37644 mapdordlem2 41631 eu6w 42664 iccelpart 47434 ichreuopeq 47474 sbgoldbalt 47782 sbgoldbm 47785 evengpop3 47799 evengpoap3 47800 bgoldbtbnd 47810 lindslinindsimp1 48446 iscnrm3r 48936 iscnrm3l 48939 |
| Copyright terms: Public domain | W3C validator |