Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | ⊢ (𝜑 → 𝜓) |
embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: dfsb1 2486 dfmoeu 2537 disj 4386 el 5295 fpropnf1 7134 findcard2d 8914 cantnflem1 9408 ttrclss 9439 ackbij1lem16 9975 fin1a2lem10 10149 inar1 10515 grur1a 10559 sqrt2irr 15939 lcmf 16319 lcmfunsnlem 16327 exprmfct 16390 pockthg 16588 prmgaplem5 16737 prmgaplem6 16738 drsdirfi 18004 obslbs 20918 mdetunilem9 21750 iscnp4 22395 isreg2 22509 dfconn2 22551 1stccnp 22594 flftg 23128 cnpfcf 23173 tsmsxp 23287 nmoleub 23876 vitalilem2 24754 vitalilem5 24757 c1lip1 25142 aalioulem6 25478 jensen 26119 2sqlem6 26552 dchrisumlem3 26620 pntlem3 26738 finsumvtxdg2sstep 27897 bnj849 32884 cvmlift2lem1 33243 cvmlift2lem12 33255 mclsax 33510 nn0prpwlem 34490 matunitlindflem1 35752 poimirlem30 35786 mapdordlem2 39630 iccelpart 44837 ichreuopeq 44877 sbgoldbalt 45185 sbgoldbm 45188 evengpop3 45202 evengpoap3 45203 bgoldbtbnd 45213 lindslinindsimp1 45750 iscnrm3r 46194 iscnrm3l 46197 |
Copyright terms: Public domain | W3C validator |