![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | ⊢ (𝜑 → 𝜓) |
embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: dfsb1 2474 dfmoeu 2524 disj 4448 elALT2 5368 fpropnf1 7275 findcard2d 9189 cantnflem1 9712 ttrclss 9743 ackbij1lem16 10258 fin1a2lem10 10432 inar1 10798 grur1a 10842 sqrt2irr 16225 lcmf 16603 lcmfunsnlem 16611 exprmfct 16674 pockthg 16874 prmgaplem5 17023 prmgaplem6 17024 drsdirfi 18296 obslbs 21668 mdetunilem9 22552 iscnp4 23197 isreg2 23311 dfconn2 23353 1stccnp 23396 flftg 23930 cnpfcf 23975 tsmsxp 24089 nmoleub 24678 vitalilem2 25568 vitalilem5 25571 c1lip1 25960 aalioulem6 26302 jensen 26951 2sqlem6 27386 dchrisumlem3 27454 pntlem3 27572 finsumvtxdg2sstep 29419 bnj849 34626 cvmlift2lem1 34982 cvmlift2lem12 34994 mclsax 35249 nn0prpwlem 35876 matunitlindflem1 37159 poimirlem30 37193 mapdordlem2 41179 iccelpart 46836 ichreuopeq 46876 sbgoldbalt 47184 sbgoldbm 47187 evengpop3 47201 evengpoap3 47202 bgoldbtbnd 47212 lindslinindsimp1 47637 iscnrm3r 48079 iscnrm3l 48082 |
Copyright terms: Public domain | W3C validator |