| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (𝜑 → 𝜓) |
| embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: dfsb1 2483 dfmoeu 2533 elALT2 5309 fpropnf1 7207 findcard2d 9083 cantnflem1 9586 ttrclss 9617 ackbij1lem16 10132 fin1a2lem10 10307 inar1 10673 grur1a 10717 sqrt2irr 16160 lcmf 16546 lcmfunsnlem 16554 exprmfct 16617 pockthg 16820 prmgaplem5 16969 prmgaplem6 16970 drsdirfi 18213 obslbs 21669 mdetunilem9 22536 iscnp4 23179 isreg2 23293 dfconn2 23335 1stccnp 23378 flftg 23912 cnpfcf 23957 tsmsxp 24071 nmoleub 24647 vitalilem2 25538 vitalilem5 25541 c1lip1 25930 aalioulem6 26273 jensen 26927 2sqlem6 27362 dchrisumlem3 27430 pntlem3 27548 finsumvtxdg2sstep 29530 dfufd2lem 33521 bnj849 34958 cvmlift2lem1 35367 cvmlift2lem12 35379 mclsax 35634 nn0prpwlem 36387 matunitlindflem1 37676 poimirlem30 37710 mapdordlem2 41756 eu6w 42794 iccelpart 47557 ichreuopeq 47597 sbgoldbalt 47905 sbgoldbm 47908 evengpop3 47922 evengpoap3 47923 bgoldbtbnd 47933 lindslinindsimp1 48582 iscnrm3r 49072 iscnrm3l 49075 |
| Copyright terms: Public domain | W3C validator |