![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version |
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
Ref | Expression |
---|---|
embantd.1 | ⊢ (𝜑 → 𝜓) |
embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: dfsb1 2480 dfmoeu 2530 disj 4447 elALT2 5367 fpropnf1 7268 findcard2d 9168 cantnflem1 9686 ttrclss 9717 ackbij1lem16 10232 fin1a2lem10 10406 inar1 10772 grur1a 10816 sqrt2irr 16196 lcmf 16574 lcmfunsnlem 16582 exprmfct 16645 pockthg 16843 prmgaplem5 16992 prmgaplem6 16993 drsdirfi 18262 obslbs 21504 mdetunilem9 22342 iscnp4 22987 isreg2 23101 dfconn2 23143 1stccnp 23186 flftg 23720 cnpfcf 23765 tsmsxp 23879 nmoleub 24468 vitalilem2 25350 vitalilem5 25353 c1lip1 25738 aalioulem6 26074 jensen 26717 2sqlem6 27150 dchrisumlem3 27218 pntlem3 27336 finsumvtxdg2sstep 29061 bnj849 34222 cvmlift2lem1 34579 cvmlift2lem12 34591 mclsax 34846 nn0prpwlem 35510 matunitlindflem1 36787 poimirlem30 36821 mapdordlem2 40811 iccelpart 46400 ichreuopeq 46440 sbgoldbalt 46748 sbgoldbm 46751 evengpop3 46765 evengpoap3 46766 bgoldbtbnd 46776 lindslinindsimp1 47226 iscnrm3r 47669 iscnrm3l 47672 |
Copyright terms: Public domain | W3C validator |