| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embantd | Structured version Visualization version GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (𝜑 → 𝜓) |
| embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpid 44 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: dfsb1 2480 dfmoeu 2530 disj 4416 elALT2 5327 fpropnf1 7245 findcard2d 9136 cantnflem1 9649 ttrclss 9680 ackbij1lem16 10194 fin1a2lem10 10369 inar1 10735 grur1a 10779 sqrt2irr 16224 lcmf 16610 lcmfunsnlem 16618 exprmfct 16681 pockthg 16884 prmgaplem5 17033 prmgaplem6 17034 drsdirfi 18273 obslbs 21646 mdetunilem9 22514 iscnp4 23157 isreg2 23271 dfconn2 23313 1stccnp 23356 flftg 23890 cnpfcf 23935 tsmsxp 24049 nmoleub 24626 vitalilem2 25517 vitalilem5 25520 c1lip1 25909 aalioulem6 26252 jensen 26906 2sqlem6 27341 dchrisumlem3 27409 pntlem3 27527 finsumvtxdg2sstep 29484 dfufd2lem 33527 bnj849 34922 cvmlift2lem1 35296 cvmlift2lem12 35308 mclsax 35563 nn0prpwlem 36317 matunitlindflem1 37617 poimirlem30 37651 mapdordlem2 41638 eu6w 42671 iccelpart 47438 ichreuopeq 47478 sbgoldbalt 47786 sbgoldbm 47789 evengpop3 47803 evengpoap3 47804 bgoldbtbnd 47814 lindslinindsimp1 48450 iscnrm3r 48940 iscnrm3l 48943 |
| Copyright terms: Public domain | W3C validator |