![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpow3 | Structured version Visualization version GIF version |
Description: A variant of the Axiom of Power Sets ax-pow 5364. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow3 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpow2 5366 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
2 | 1 | bm1.3ii 5303 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
3 | bicom 221 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) | |
4 | 3 | albii 1822 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
5 | 4 | exbii 1851 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
6 | 2, 5 | mpbir 230 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 ∃wex 1782 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-pow 5364 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |