MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpow3 Structured version   Visualization version   GIF version

Theorem axpow3 5367
Description: A variant of the Axiom of Power Sets ax-pow 5364. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3 𝑦𝑧(𝑧𝑥𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 5366 . . 3 𝑦𝑧(𝑧𝑥𝑧𝑦)
21sepexi 5300 . 2 𝑦𝑧(𝑧𝑦𝑧𝑥)
3 bicom1 221 . . 3 ((𝑧𝑦𝑧𝑥) → (𝑧𝑥𝑧𝑦))
43alimi 1810 . 2 (∀𝑧(𝑧𝑦𝑧𝑥) → ∀𝑧(𝑧𝑥𝑧𝑦))
52, 4eximii 1836 1 𝑦𝑧(𝑧𝑥𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1537  wex 1778  wss 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-sep 5295  ax-pow 5364
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-ss 3967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator