| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axpow3 | Structured version Visualization version GIF version | ||
| Description: A variant of the Axiom of Power Sets ax-pow 5340. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| Ref | Expression |
|---|---|
| axpow3 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axpow2 5342 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
| 2 | 1 | sepexi 5276 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
| 3 | bicom1 221 | . . 3 ⊢ ((𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → (𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 4 | 3 | alimi 1811 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| 5 | 2, 4 | eximii 1837 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∃wex 1779 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-sep 5271 ax-pow 5340 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ss 3948 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |