Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpow3 Structured version   Visualization version   GIF version

Theorem axpow3 5260
 Description: A variant of the Axiom of Power Sets ax-pow 5257. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3 𝑦𝑧(𝑧𝑥𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 5259 . . 3 𝑦𝑧(𝑧𝑥𝑧𝑦)
21bm1.3ii 5197 . 2 𝑦𝑧(𝑧𝑦𝑧𝑥)
3 bicom 224 . . . 4 ((𝑧𝑥𝑧𝑦) ↔ (𝑧𝑦𝑧𝑥))
43albii 1813 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
54exbii 1841 . 2 (∃𝑦𝑧(𝑧𝑥𝑧𝑦) ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
62, 5mpbir 233 1 𝑦𝑧(𝑧𝑥𝑧𝑦)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208  ∀wal 1528  ∃wex 1773   ⊆ wss 3934 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-pow 5257 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-in 3941  df-ss 3950 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator