|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > axpow3 | Structured version Visualization version GIF version | ||
| Description: A variant of the Axiom of Power Sets ax-pow 5364. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) | 
| Ref | Expression | 
|---|---|
| axpow3 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axpow2 5366 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
| 2 | 1 | sepexi 5300 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) | 
| 3 | bicom1 221 | . . 3 ⊢ ((𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → (𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 4 | 3 | alimi 1810 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦)) | 
| 5 | 2, 4 | eximii 1836 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wal 1537 ∃wex 1778 ⊆ wss 3950 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-sep 5295 ax-pow 5364 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ss 3967 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |