Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldifeldifsn | Structured version Visualization version GIF version |
Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
eldifeldifsn | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4738 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
2 | 1 | sscond 4072 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝐵 ∖ 𝐴) ⊆ (𝐵 ∖ {𝑋})) |
3 | 2 | sselda 3917 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-sn 4559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |