MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifeldifsn Structured version   Visualization version   GIF version

Theorem eldifeldifsn 4792
Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.)
Assertion
Ref Expression
eldifeldifsn ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))

Proof of Theorem eldifeldifsn
StepHypRef Expression
1 snssi 4789 . . 3 (𝑋𝐴 → {𝑋} ⊆ 𝐴)
21sscond 4126 . 2 (𝑋𝐴 → (𝐵𝐴) ⊆ (𝐵 ∖ {𝑋}))
32sselda 3963 1 ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cdif 3928  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-ss 3948  df-sn 4607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator