![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldifeldifsn | Structured version Visualization version GIF version |
Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
eldifeldifsn | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4808 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
2 | 1 | sscond 4135 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝐵 ∖ 𝐴) ⊆ (𝐵 ∖ {𝑋})) |
3 | 2 | sselda 3973 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∖ cdif 3938 {csn 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-dif 3944 df-ss 3958 df-sn 4626 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |