MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifeldifsn Structured version   Visualization version   GIF version

Theorem eldifeldifsn 4741
Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.)
Assertion
Ref Expression
eldifeldifsn ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))

Proof of Theorem eldifeldifsn
StepHypRef Expression
1 snssi 4738 . . 3 (𝑋𝐴 → {𝑋} ⊆ 𝐴)
21sscond 4072 . 2 (𝑋𝐴 → (𝐵𝐴) ⊆ (𝐵 ∖ {𝑋}))
32sselda 3917 1 ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cdif 3880  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-sn 4559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator