| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifeldifsn | Structured version Visualization version GIF version | ||
| Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| eldifeldifsn | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4789 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
| 2 | 1 | sscond 4126 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝐵 ∖ 𝐴) ⊆ (𝐵 ∖ {𝑋})) |
| 3 | 2 | sselda 3963 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3928 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-ss 3948 df-sn 4607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |