MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifeldifsn Structured version   Visualization version   GIF version

Theorem eldifeldifsn 4761
Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.)
Assertion
Ref Expression
eldifeldifsn ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))

Proof of Theorem eldifeldifsn
StepHypRef Expression
1 snssi 4758 . . 3 (𝑋𝐴 → {𝑋} ⊆ 𝐴)
21sscond 4094 . 2 (𝑋𝐴 → (𝐵𝐴) ⊆ (𝐵 ∖ {𝑋}))
32sselda 3932 1 ((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2110  cdif 3897  {csn 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-dif 3903  df-ss 3917  df-sn 4575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator