| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifeldifsn | Structured version Visualization version GIF version | ||
| Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| eldifeldifsn | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4761 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
| 2 | 1 | sscond 4097 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝐵 ∖ 𝐴) ⊆ (𝐵 ∖ {𝑋})) |
| 3 | 2 | sselda 3931 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∖ cdif 3896 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-dif 3902 df-ss 3916 df-sn 4578 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |