MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnid Structured version   Visualization version   GIF version

Theorem difsnid 4770
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
Assertion
Ref Expression
difsnid (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem difsnid
StepHypRef Expression
1 snssi 4768 . 2 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
2 undifr 4442 . 2 ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
31, 2sylib 218 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3908  cun 3909  wss 3911  {csn 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-sn 4586
This theorem is referenced by:  fnsnsplit  7140  fsnunf2  7142  difsnexi  7717  difsnen  9000  enfixsn  9027  pssnn  9109  dif1ennnALT  9198  frfi  9208  xpfiOLD  9246  dif1card  9939  hashgt23el  14365  hashfun  14378  fprodfvdvdsd  16280  prmdvdsprmo  16989  mreexexlem4d  17584  symgextf1  19327  symgextfo  19328  symgfixf1  19343  gsumdifsnd  19867  gsummgp0  20203  islindf4  21723  scmatf1  22394  gsummatr01  22522  tdeglem4  25941  finsumvtxdg2sstep  29453  dfconngr1  30090  fmptunsnop  32596  satfv1lem  35322  bj-raldifsn  37061  lindsadd  37580  lindsenlbs  37582  poimirlem25  37612  poimirlem27  37614  hdmap14lem4a  41838  hdmap14lem13  41847  supxrmnf2  45402  infxrpnf2  45432  fsumnncl  45543  hoidmv1lelem2  46563  gsumdifsndf  48142  mgpsumunsn  48322
  Copyright terms: Public domain W3C validator