| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version | ||
| Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
| Ref | Expression |
|---|---|
| difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4772 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 2 | undifr 4446 | . 2 ⊢ ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∪ cun 3912 ⊆ wss 3914 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-sn 4590 |
| This theorem is referenced by: fnsnsplit 7158 fsnunf2 7160 difsnexi 7737 difsnen 9023 enfixsn 9050 pssnn 9132 dif1ennnALT 9222 frfi 9232 xpfiOLD 9270 dif1card 9963 hashgt23el 14389 hashfun 14402 fprodfvdvdsd 16304 prmdvdsprmo 17013 mreexexlem4d 17608 symgextf1 19351 symgextfo 19352 symgfixf1 19367 gsumdifsnd 19891 gsummgp0 20227 islindf4 21747 scmatf1 22418 gsummatr01 22546 tdeglem4 25965 finsumvtxdg2sstep 29477 dfconngr1 30117 fmptunsnop 32623 satfv1lem 35349 bj-raldifsn 37088 lindsadd 37607 lindsenlbs 37609 poimirlem25 37639 poimirlem27 37641 hdmap14lem4a 41865 hdmap14lem13 41874 supxrmnf2 45429 infxrpnf2 45459 fsumnncl 45570 hoidmv1lelem2 46590 gsumdifsndf 48166 mgpsumunsn 48346 |
| Copyright terms: Public domain | W3C validator |