MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnid Structured version   Visualization version   GIF version

Theorem difsnid 4791
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
Assertion
Ref Expression
difsnid (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem difsnid
StepHypRef Expression
1 snssi 4789 . 2 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
2 undifr 4463 . 2 ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
31, 2sylib 218 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3928  cun 3929  wss 3931  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-sn 4607
This theorem is referenced by:  fnsnsplit  7181  fsnunf2  7183  difsnexi  7760  difsnen  9072  enfixsn  9100  pssnn  9187  phplem2OLD  9234  dif1ennnALT  9288  frfi  9298  xpfiOLD  9336  dif1card  10029  hashgt23el  14447  hashfun  14460  fprodfvdvdsd  16358  prmdvdsprmo  17067  mreexexlem4d  17664  symgextf1  19407  symgextfo  19408  symgfixf1  19423  gsumdifsnd  19947  gsummgp0  20283  islindf4  21803  scmatf1  22474  gsummatr01  22602  tdeglem4  26022  finsumvtxdg2sstep  29534  dfconngr1  30174  fmptunsnop  32682  satfv1lem  35389  bj-raldifsn  37123  lindsadd  37642  lindsenlbs  37644  poimirlem25  37674  poimirlem27  37676  hdmap14lem4a  41895  hdmap14lem13  41904  supxrmnf2  45427  infxrpnf2  45457  fsumnncl  45568  hoidmv1lelem2  46588  gsumdifsndf  48123  mgpsumunsn  48303
  Copyright terms: Public domain W3C validator