| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version | ||
| Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
| Ref | Expression |
|---|---|
| difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4768 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 2 | undifr 4442 | . 2 ⊢ ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ∪ cun 3909 ⊆ wss 3911 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-sn 4586 |
| This theorem is referenced by: fnsnsplit 7140 fsnunf2 7142 difsnexi 7717 difsnen 9000 enfixsn 9027 pssnn 9109 dif1ennnALT 9198 frfi 9208 xpfiOLD 9246 dif1card 9939 hashgt23el 14365 hashfun 14378 fprodfvdvdsd 16280 prmdvdsprmo 16989 mreexexlem4d 17584 symgextf1 19327 symgextfo 19328 symgfixf1 19343 gsumdifsnd 19867 gsummgp0 20203 islindf4 21723 scmatf1 22394 gsummatr01 22522 tdeglem4 25941 finsumvtxdg2sstep 29453 dfconngr1 30090 fmptunsnop 32596 satfv1lem 35322 bj-raldifsn 37061 lindsadd 37580 lindsenlbs 37582 poimirlem25 37612 poimirlem27 37614 hdmap14lem4a 41838 hdmap14lem13 41847 supxrmnf2 45402 infxrpnf2 45432 fsumnncl 45543 hoidmv1lelem2 46563 gsumdifsndf 48142 mgpsumunsn 48322 |
| Copyright terms: Public domain | W3C validator |