![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version |
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
Ref | Expression |
---|---|
difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4050 | . 2 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵})) | |
2 | snssi 4648 | . . 3 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
3 | undif 4344 | . . 3 ⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) | |
4 | 2, 3 | sylib 219 | . 2 ⊢ (𝐵 ∈ 𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) |
5 | 1, 4 | syl5eq 2843 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ∖ cdif 3856 ∪ cun 3857 ⊆ wss 3859 {csn 4472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-sn 4473 |
This theorem is referenced by: fnsnsplit 6813 fsnunf2 6815 difsnexi 7340 difsnen 8446 enfixsn 8473 phplem2 8544 pssnn 8582 dif1en 8597 frfi 8609 xpfi 8635 dif1card 9282 hashgt23el 13633 hashfun 13646 fprodfvdvdsd 15516 prmdvdsprmo 16207 mreexexlem4d 16747 symgextf1 18280 symgextfo 18281 symgfixf1 18296 gsumdifsnd 18801 gsummgp0 19048 islindf4 20664 scmatf1 20824 gsummatr01 20952 tdeglem4 24337 finsumvtxdg2sstep 27014 dfconngr1 27654 satfv1lem 32218 bj-raldifsn 34010 lindsadd 34435 lindsenlbs 34437 poimirlem25 34467 poimirlem27 34469 hdmap14lem4a 38557 hdmap14lem13 38566 supxrmnf2 41268 infxrpnf2 41300 fsumnncl 41413 hoidmv1lelem2 42436 mgpsumunsn 43907 gsumdifsndf 43911 |
Copyright terms: Public domain | W3C validator |