Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version |
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
Ref | Expression |
---|---|
difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4087 | . 2 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵})) | |
2 | snssi 4741 | . . 3 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
3 | undif 4415 | . . 3 ⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) | |
4 | 2, 3 | sylib 217 | . 2 ⊢ (𝐵 ∈ 𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) |
5 | 1, 4 | eqtrid 2790 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 |
This theorem is referenced by: fnsnsplit 7056 fsnunf2 7058 difsnexi 7611 difsnen 8840 enfixsn 8868 pssnn 8951 phplem2OLD 9001 pssnnOLD 9040 dif1enALT 9050 frfi 9059 xpfi 9085 dif1card 9766 hashgt23el 14139 hashfun 14152 fprodfvdvdsd 16043 prmdvdsprmo 16743 mreexexlem4d 17356 symgextf1 19029 symgextfo 19030 symgfixf1 19045 gsumdifsnd 19562 gsummgp0 19847 islindf4 21045 scmatf1 21680 gsummatr01 21808 tdeglem4 25224 tdeglem4OLD 25225 finsumvtxdg2sstep 27916 dfconngr1 28552 satfv1lem 33324 bj-raldifsn 35271 lindsadd 35770 lindsenlbs 35772 poimirlem25 35802 poimirlem27 35804 hdmap14lem4a 39885 hdmap14lem13 39894 supxrmnf2 42973 infxrpnf2 43003 fsumnncl 43113 hoidmv1lelem2 44130 gsumdifsndf 45375 mgpsumunsn 45697 |
Copyright terms: Public domain | W3C validator |