| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version | ||
| Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
| Ref | Expression |
|---|---|
| difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4789 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 2 | undifr 4463 | . 2 ⊢ ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ⊆ wss 3931 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-sn 4607 |
| This theorem is referenced by: fnsnsplit 7181 fsnunf2 7183 difsnexi 7760 difsnen 9072 enfixsn 9100 pssnn 9187 phplem2OLD 9234 dif1ennnALT 9288 frfi 9298 xpfiOLD 9336 dif1card 10029 hashgt23el 14447 hashfun 14460 fprodfvdvdsd 16358 prmdvdsprmo 17067 mreexexlem4d 17664 symgextf1 19407 symgextfo 19408 symgfixf1 19423 gsumdifsnd 19947 gsummgp0 20283 islindf4 21803 scmatf1 22474 gsummatr01 22602 tdeglem4 26022 finsumvtxdg2sstep 29534 dfconngr1 30174 fmptunsnop 32682 satfv1lem 35389 bj-raldifsn 37123 lindsadd 37642 lindsenlbs 37644 poimirlem25 37674 poimirlem27 37676 hdmap14lem4a 41895 hdmap14lem13 41904 supxrmnf2 45427 infxrpnf2 45457 fsumnncl 45568 hoidmv1lelem2 46588 gsumdifsndf 48123 mgpsumunsn 48303 |
| Copyright terms: Public domain | W3C validator |