Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version |
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
Ref | Expression |
---|---|
difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4067 | . 2 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵})) | |
2 | snssi 4721 | . . 3 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
3 | undif 4396 | . . 3 ⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) | |
4 | 2, 3 | sylib 221 | . 2 ⊢ (𝐵 ∈ 𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) |
5 | 1, 4 | eqtrid 2789 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ∪ cun 3864 ⊆ wss 3866 {csn 4541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-sn 4542 |
This theorem is referenced by: fnsnsplit 6999 fsnunf2 7001 difsnexi 7546 difsnen 8727 enfixsn 8754 phplem2 8826 pssnn 8846 pssnnOLD 8895 dif1enALT 8907 frfi 8916 xpfi 8942 dif1card 9624 hashgt23el 13991 hashfun 14004 fprodfvdvdsd 15895 prmdvdsprmo 16595 mreexexlem4d 17150 symgextf1 18813 symgextfo 18814 symgfixf1 18829 gsumdifsnd 19346 gsummgp0 19626 islindf4 20800 scmatf1 21428 gsummatr01 21556 tdeglem4 24957 tdeglem4OLD 24958 finsumvtxdg2sstep 27637 dfconngr1 28271 satfv1lem 33037 bj-raldifsn 35006 lindsadd 35507 lindsenlbs 35509 poimirlem25 35539 poimirlem27 35541 hdmap14lem4a 39622 hdmap14lem13 39631 supxrmnf2 42646 infxrpnf2 42678 fsumnncl 42788 hoidmv1lelem2 43805 gsumdifsndf 45048 mgpsumunsn 45370 |
Copyright terms: Public domain | W3C validator |