MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnid Structured version   Visualization version   GIF version

Theorem difsnid 4757
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
Assertion
Ref Expression
difsnid (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem difsnid
StepHypRef Expression
1 snssi 4755 . 2 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
2 undifr 4428 . 2 ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
31, 2sylib 218 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  cun 3895  wss 3897  {csn 4571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-sn 4572
This theorem is referenced by:  fnsnsplit  7113  fsnunf2  7115  difsnexi  7689  difsnen  8967  enfixsn  8994  pssnn  9073  dif1ennnALT  9156  frfi  9164  dif1card  9896  hashgt23el  14326  hashfun  14339  fprodfvdvdsd  16240  prmdvdsprmo  16949  mreexexlem4d  17548  symgextf1  19328  symgextfo  19329  symgfixf1  19344  gsumdifsnd  19868  gsummgp0  20231  islindf4  21770  scmatf1  22441  gsummatr01  22569  tdeglem4  25987  finsumvtxdg2sstep  29523  dfconngr1  30160  fmptunsnop  32673  satfv1lem  35398  bj-raldifsn  37134  lindsadd  37653  lindsenlbs  37655  poimirlem25  37685  poimirlem27  37687  hdmap14lem4a  41910  hdmap14lem13  41919  supxrmnf2  45471  infxrpnf2  45501  fsumnncl  45612  hoidmv1lelem2  46630  gsumdifsndf  48212  mgpsumunsn  48392
  Copyright terms: Public domain W3C validator