MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnid Structured version   Visualization version   GIF version

Theorem difsnid 4745
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
Assertion
Ref Expression
difsnid (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem difsnid
StepHypRef Expression
1 uncom 4131 . 2 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵}))
2 snssi 4743 . . 3 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
3 undif 4432 . . 3 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴)
42, 3sylib 220 . 2 (𝐵𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴)
51, 4syl5eq 2870 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cdif 3935  cun 3936  wss 3938  {csn 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-sn 4570
This theorem is referenced by:  fnsnsplit  6948  fsnunf2  6950  difsnexi  7485  difsnen  8601  enfixsn  8628  phplem2  8699  pssnn  8738  dif1en  8753  frfi  8765  xpfi  8791  dif1card  9438  hashgt23el  13788  hashfun  13801  fprodfvdvdsd  15685  prmdvdsprmo  16380  mreexexlem4d  16920  symgextf1  18551  symgextfo  18552  symgfixf1  18567  gsumdifsnd  19083  gsummgp0  19360  islindf4  20984  scmatf1  21142  gsummatr01  21270  tdeglem4  24656  finsumvtxdg2sstep  27333  dfconngr1  27969  satfv1lem  32611  bj-raldifsn  34394  lindsadd  34887  lindsenlbs  34889  poimirlem25  34919  poimirlem27  34921  hdmap14lem4a  39009  hdmap14lem13  39018  supxrmnf2  41714  infxrpnf2  41746  fsumnncl  41859  hoidmv1lelem2  42881  gsumdifsndf  44095  mgpsumunsn  44416
  Copyright terms: Public domain W3C validator