MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnid Structured version   Visualization version   GIF version

Theorem difsnid 4763
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
Assertion
Ref Expression
difsnid (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem difsnid
StepHypRef Expression
1 snssi 4761 . 2 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
2 undifr 4432 . 2 ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
31, 2sylib 218 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cdif 3895  cun 3896  wss 3898  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-sn 4578
This theorem is referenced by:  fnsnsplit  7127  fsnunf2  7129  difsnexi  7703  difsnen  8983  enfixsn  9010  pssnn  9089  dif1ennnALT  9172  frfi  9180  dif1card  9912  hashgt23el  14338  hashfun  14351  fprodfvdvdsd  16252  prmdvdsprmo  16961  mreexexlem4d  17561  symgextf1  19341  symgextfo  19342  symgfixf1  19357  gsumdifsnd  19881  gsummgp0  20244  islindf4  21784  scmatf1  22466  gsummatr01  22594  tdeglem4  26012  finsumvtxdg2sstep  29549  dfconngr1  30189  fmptunsnop  32705  satfv1lem  35478  bj-raldifsn  37217  lindsadd  37726  lindsenlbs  37728  poimirlem25  37758  poimirlem27  37760  hdmap14lem4a  42043  hdmap14lem13  42052  supxrmnf2  45593  infxrpnf2  45623  fsumnncl  45734  hoidmv1lelem2  46752  gsumdifsndf  48343  mgpsumunsn  48523
  Copyright terms: Public domain W3C validator