Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version |
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
Ref | Expression |
---|---|
difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4083 | . 2 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵})) | |
2 | snssi 4738 | . . 3 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
3 | undif 4412 | . . 3 ⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) | |
4 | 2, 3 | sylib 217 | . 2 ⊢ (𝐵 ∈ 𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) |
5 | 1, 4 | eqtrid 2790 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 |
This theorem is referenced by: fnsnsplit 7038 fsnunf2 7040 difsnexi 7589 difsnen 8794 enfixsn 8821 phplem2 8893 pssnn 8913 pssnnOLD 8969 dif1enALT 8980 frfi 8989 xpfi 9015 dif1card 9697 hashgt23el 14067 hashfun 14080 fprodfvdvdsd 15971 prmdvdsprmo 16671 mreexexlem4d 17273 symgextf1 18944 symgextfo 18945 symgfixf1 18960 gsumdifsnd 19477 gsummgp0 19762 islindf4 20955 scmatf1 21588 gsummatr01 21716 tdeglem4 25129 tdeglem4OLD 25130 finsumvtxdg2sstep 27819 dfconngr1 28453 satfv1lem 33224 bj-raldifsn 35198 lindsadd 35697 lindsenlbs 35699 poimirlem25 35729 poimirlem27 35731 hdmap14lem4a 39812 hdmap14lem13 39821 supxrmnf2 42863 infxrpnf2 42893 fsumnncl 43003 hoidmv1lelem2 44020 gsumdifsndf 45263 mgpsumunsn 45585 |
Copyright terms: Public domain | W3C validator |