| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version | ||
| Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
| Ref | Expression |
|---|---|
| difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4761 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 2 | undifr 4432 | . 2 ⊢ ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4578 |
| This theorem is referenced by: fnsnsplit 7127 fsnunf2 7129 difsnexi 7703 difsnen 8983 enfixsn 9010 pssnn 9089 dif1ennnALT 9172 frfi 9180 dif1card 9912 hashgt23el 14338 hashfun 14351 fprodfvdvdsd 16252 prmdvdsprmo 16961 mreexexlem4d 17561 symgextf1 19341 symgextfo 19342 symgfixf1 19357 gsumdifsnd 19881 gsummgp0 20244 islindf4 21784 scmatf1 22466 gsummatr01 22594 tdeglem4 26012 finsumvtxdg2sstep 29549 dfconngr1 30189 fmptunsnop 32705 satfv1lem 35478 bj-raldifsn 37217 lindsadd 37726 lindsenlbs 37728 poimirlem25 37758 poimirlem27 37760 hdmap14lem4a 42043 hdmap14lem13 42052 supxrmnf2 45593 infxrpnf2 45623 fsumnncl 45734 hoidmv1lelem2 46752 gsumdifsndf 48343 mgpsumunsn 48523 |
| Copyright terms: Public domain | W3C validator |