MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnid Structured version   Visualization version   GIF version

Theorem difsnid 4774
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
Assertion
Ref Expression
difsnid (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem difsnid
StepHypRef Expression
1 snssi 4772 . 2 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
2 undifr 4446 . 2 ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
31, 2sylib 218 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3911  cun 3912  wss 3914  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-sn 4590
This theorem is referenced by:  fnsnsplit  7158  fsnunf2  7160  difsnexi  7737  difsnen  9023  enfixsn  9050  pssnn  9132  dif1ennnALT  9222  frfi  9232  xpfiOLD  9270  dif1card  9963  hashgt23el  14389  hashfun  14402  fprodfvdvdsd  16304  prmdvdsprmo  17013  mreexexlem4d  17608  symgextf1  19351  symgextfo  19352  symgfixf1  19367  gsumdifsnd  19891  gsummgp0  20227  islindf4  21747  scmatf1  22418  gsummatr01  22546  tdeglem4  25965  finsumvtxdg2sstep  29477  dfconngr1  30117  fmptunsnop  32623  satfv1lem  35349  bj-raldifsn  37088  lindsadd  37607  lindsenlbs  37609  poimirlem25  37639  poimirlem27  37641  hdmap14lem4a  41865  hdmap14lem13  41874  supxrmnf2  45429  infxrpnf2  45459  fsumnncl  45570  hoidmv1lelem2  46590  gsumdifsndf  48166  mgpsumunsn  48346
  Copyright terms: Public domain W3C validator