MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnid Structured version   Visualization version   GIF version

Theorem difsnid 4761
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
Assertion
Ref Expression
difsnid (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem difsnid
StepHypRef Expression
1 snssi 4759 . 2 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
2 undifr 4434 . 2 ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
31, 2sylib 218 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3900  cun 3901  wss 3903  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-sn 4578
This theorem is referenced by:  fnsnsplit  7120  fsnunf2  7122  difsnexi  7697  difsnen  8976  enfixsn  9003  pssnn  9082  dif1ennnALT  9166  frfi  9174  dif1card  9904  hashgt23el  14331  hashfun  14344  fprodfvdvdsd  16245  prmdvdsprmo  16954  mreexexlem4d  17553  symgextf1  19300  symgextfo  19301  symgfixf1  19316  gsumdifsnd  19840  gsummgp0  20203  islindf4  21745  scmatf1  22416  gsummatr01  22544  tdeglem4  25963  finsumvtxdg2sstep  29495  dfconngr1  30132  fmptunsnop  32642  satfv1lem  35335  bj-raldifsn  37074  lindsadd  37593  lindsenlbs  37595  poimirlem25  37625  poimirlem27  37627  hdmap14lem4a  41850  hdmap14lem13  41859  supxrmnf2  45412  infxrpnf2  45442  fsumnncl  45553  hoidmv1lelem2  46573  gsumdifsndf  48165  mgpsumunsn  48345
  Copyright terms: Public domain W3C validator