| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version | ||
| Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
| Ref | Expression |
|---|---|
| difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4759 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 2 | undifr 4434 | . 2 ⊢ ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ∪ cun 3901 ⊆ wss 3903 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-sn 4578 |
| This theorem is referenced by: fnsnsplit 7120 fsnunf2 7122 difsnexi 7697 difsnen 8976 enfixsn 9003 pssnn 9082 dif1ennnALT 9166 frfi 9174 dif1card 9904 hashgt23el 14331 hashfun 14344 fprodfvdvdsd 16245 prmdvdsprmo 16954 mreexexlem4d 17553 symgextf1 19300 symgextfo 19301 symgfixf1 19316 gsumdifsnd 19840 gsummgp0 20203 islindf4 21745 scmatf1 22416 gsummatr01 22544 tdeglem4 25963 finsumvtxdg2sstep 29495 dfconngr1 30132 fmptunsnop 32642 satfv1lem 35335 bj-raldifsn 37074 lindsadd 37593 lindsenlbs 37595 poimirlem25 37625 poimirlem27 37627 hdmap14lem4a 41850 hdmap14lem13 41859 supxrmnf2 45412 infxrpnf2 45442 fsumnncl 45553 hoidmv1lelem2 46573 gsumdifsndf 48165 mgpsumunsn 48345 |
| Copyright terms: Public domain | W3C validator |