| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnid | Structured version Visualization version GIF version | ||
| Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
| Ref | Expression |
|---|---|
| difsnid | ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4755 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 2 | undifr 4428 | . 2 ⊢ ({𝐵} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-sn 4572 |
| This theorem is referenced by: fnsnsplit 7113 fsnunf2 7115 difsnexi 7689 difsnen 8967 enfixsn 8994 pssnn 9073 dif1ennnALT 9156 frfi 9164 dif1card 9896 hashgt23el 14326 hashfun 14339 fprodfvdvdsd 16240 prmdvdsprmo 16949 mreexexlem4d 17548 symgextf1 19328 symgextfo 19329 symgfixf1 19344 gsumdifsnd 19868 gsummgp0 20231 islindf4 21770 scmatf1 22441 gsummatr01 22569 tdeglem4 25987 finsumvtxdg2sstep 29523 dfconngr1 30160 fmptunsnop 32673 satfv1lem 35398 bj-raldifsn 37134 lindsadd 37653 lindsenlbs 37655 poimirlem25 37685 poimirlem27 37687 hdmap14lem4a 41910 hdmap14lem13 41919 supxrmnf2 45471 infxrpnf2 45501 fsumnncl 45612 hoidmv1lelem2 46630 gsumdifsndf 48212 mgpsumunsn 48392 |
| Copyright terms: Public domain | W3C validator |