Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version |
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
pw0 | ⊢ 𝒫 ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4337 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
2 | 1 | abbii 2810 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
3 | df-pw 4541 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
4 | df-sn 4568 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
5 | 2, 3, 4 | 3eqtr4i 2778 | 1 ⊢ 𝒫 ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {cab 2717 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 {csn 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 df-pw 4541 df-sn 4568 |
This theorem is referenced by: p0ex 5311 pwfi 8943 pwfiOLD 9092 ackbij1lem14 9990 fin1a2lem12 10168 0tsk 10512 hashbc 14163 incexclem 15546 sn0topon 22146 sn0cld 22239 ust0 23369 uhgr0vb 27440 uhgr0 27441 esumnul 32012 made0 34053 rankeq1o 34469 ssoninhaus 34633 sge00 43885 |
Copyright terms: Public domain | W3C validator |