MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw0 Structured version   Visualization version   GIF version

Theorem pw0 4764
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 4351 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2798 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 4552 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 4577 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2764 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-dif 3905  df-ss 3919  df-nul 4284  df-pw 4552  df-sn 4577
This theorem is referenced by:  p0ex  5322  pwfi  9203  ackbij1lem14  10120  fin1a2lem12  10299  0tsk  10643  hashbc  14357  incexclem  15740  sn0topon  22911  sn0cld  23003  ust0  24133  made0  27816  uhgr0vb  29048  uhgr0  29049  esumnul  34056  rankeq1o  36204  ssoninhaus  36481  sge00  46413
  Copyright terms: Public domain W3C validator