MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw0 Structured version   Visualization version   GIF version

Theorem pw0 4745
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 4331 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2808 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 4535 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 4562 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2776 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562
This theorem is referenced by:  p0ex  5307  pwfi  8961  pwfiOLD  9114  ackbij1lem14  9989  fin1a2lem12  10167  0tsk  10511  hashbc  14165  incexclem  15548  sn0topon  22148  sn0cld  22241  ust0  23371  uhgr0vb  27442  uhgr0  27443  esumnul  32016  made0  34057  rankeq1o  34473  ssoninhaus  34637  sge00  43914
  Copyright terms: Public domain W3C validator