| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version | ||
| Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| pw0 | ⊢ 𝒫 ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4351 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
| 2 | 1 | abbii 2798 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
| 3 | df-pw 4552 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
| 4 | df-sn 4577 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 5 | 2, 3, 4 | 3eqtr4i 2764 | 1 ⊢ 𝒫 ∅ = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2709 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3905 df-ss 3919 df-nul 4284 df-pw 4552 df-sn 4577 |
| This theorem is referenced by: p0ex 5322 pwfi 9203 ackbij1lem14 10120 fin1a2lem12 10299 0tsk 10643 hashbc 14357 incexclem 15740 sn0topon 22911 sn0cld 23003 ust0 24133 made0 27816 uhgr0vb 29048 uhgr0 29049 esumnul 34056 rankeq1o 36204 ssoninhaus 36481 sge00 46413 |
| Copyright terms: Public domain | W3C validator |