![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version |
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
pw0 | ⊢ 𝒫 ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4406 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
2 | 1 | abbii 2806 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
3 | df-pw 4606 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
4 | df-sn 4631 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
5 | 2, 3, 4 | 3eqtr4i 2772 | 1 ⊢ 𝒫 ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 {cab 2711 ⊆ wss 3962 ∅c0 4338 𝒫 cpw 4604 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-dif 3965 df-ss 3979 df-nul 4339 df-pw 4606 df-sn 4631 |
This theorem is referenced by: p0ex 5389 pwfi 9354 ackbij1lem14 10269 fin1a2lem12 10448 0tsk 10792 hashbc 14488 incexclem 15868 sn0topon 23020 sn0cld 23113 ust0 24243 made0 27926 uhgr0vb 29103 uhgr0 29104 esumnul 34028 rankeq1o 36152 ssoninhaus 36430 sge00 46331 |
Copyright terms: Public domain | W3C validator |