Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version |
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
pw0 | ⊢ 𝒫 ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4331 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
2 | 1 | abbii 2808 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
3 | df-pw 4535 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
4 | df-sn 4562 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ 𝒫 ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 |
This theorem is referenced by: p0ex 5307 pwfi 8961 pwfiOLD 9114 ackbij1lem14 9989 fin1a2lem12 10167 0tsk 10511 hashbc 14165 incexclem 15548 sn0topon 22148 sn0cld 22241 ust0 23371 uhgr0vb 27442 uhgr0 27443 esumnul 32016 made0 34057 rankeq1o 34473 ssoninhaus 34637 sge00 43914 |
Copyright terms: Public domain | W3C validator |