MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw0 Structured version   Visualization version   GIF version

Theorem pw0 4766
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 4354 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2796 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 4555 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 4580 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2762 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2707  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3908  df-ss 3922  df-nul 4287  df-pw 4555  df-sn 4580
This theorem is referenced by:  p0ex  5326  pwfi  9226  ackbij1lem14  10145  fin1a2lem12  10324  0tsk  10668  hashbc  14378  incexclem  15761  sn0topon  22901  sn0cld  22993  ust0  24123  made0  27805  uhgr0vb  29035  uhgr0  29036  esumnul  34014  rankeq1o  36144  ssoninhaus  36421  sge00  46358
  Copyright terms: Public domain W3C validator