MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw0 Structured version   Visualization version   GIF version

Theorem pw0 4751
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 4337 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2810 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 4541 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 4568 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2778 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  {cab 2717  wss 3892  c0 4262  𝒫 cpw 4539  {csn 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-dif 3895  df-in 3899  df-ss 3909  df-nul 4263  df-pw 4541  df-sn 4568
This theorem is referenced by:  p0ex  5311  pwfi  8943  pwfiOLD  9092  ackbij1lem14  9990  fin1a2lem12  10168  0tsk  10512  hashbc  14163  incexclem  15546  sn0topon  22146  sn0cld  22239  ust0  23369  uhgr0vb  27440  uhgr0  27441  esumnul  32012  made0  34053  rankeq1o  34469  ssoninhaus  34633  sge00  43885
  Copyright terms: Public domain W3C validator