MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw0 Structured version   Visualization version   GIF version

Theorem pw0 4763
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 4350 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2800 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 4551 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 4576 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2766 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2711  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-dif 3901  df-ss 3915  df-nul 4283  df-pw 4551  df-sn 4576
This theorem is referenced by:  p0ex  5324  pwfi  9210  ackbij1lem14  10130  fin1a2lem12  10309  0tsk  10653  hashbc  14362  incexclem  15745  sn0topon  22914  sn0cld  23006  ust0  24136  made0  27819  uhgr0vb  29052  uhgr0  29053  esumnul  34082  r11  35126  rankeq1o  36236  ssoninhaus  36513  sge00  46498
  Copyright terms: Public domain W3C validator