Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version |
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
pw0 | ⊢ 𝒫 ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4328 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
2 | 1 | abbii 2809 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
3 | df-pw 4532 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
4 | df-sn 4559 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ 𝒫 ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 |
This theorem is referenced by: p0ex 5302 pwfi 8923 pwfiOLD 9044 ackbij1lem14 9920 fin1a2lem12 10098 0tsk 10442 hashbc 14093 incexclem 15476 sn0topon 22056 sn0cld 22149 ust0 23279 uhgr0vb 27345 uhgr0 27346 esumnul 31916 made0 33984 rankeq1o 34400 ssoninhaus 34564 sge00 43804 |
Copyright terms: Public domain | W3C validator |