| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version | ||
| Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| pw0 | ⊢ 𝒫 ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4367 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
| 2 | 1 | abbii 2797 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
| 3 | df-pw 4568 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
| 4 | df-sn 4593 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 5 | 2, 3, 4 | 3eqtr4i 2763 | 1 ⊢ 𝒫 ∅ = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2708 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3920 df-ss 3934 df-nul 4300 df-pw 4568 df-sn 4593 |
| This theorem is referenced by: p0ex 5342 pwfi 9275 ackbij1lem14 10192 fin1a2lem12 10371 0tsk 10715 hashbc 14425 incexclem 15809 sn0topon 22892 sn0cld 22984 ust0 24114 made0 27792 uhgr0vb 29006 uhgr0 29007 esumnul 34045 rankeq1o 36166 ssoninhaus 36443 sge00 46381 |
| Copyright terms: Public domain | W3C validator |