| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version | ||
| Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| pw0 | ⊢ 𝒫 ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4364 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
| 2 | 1 | abbii 2796 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
| 3 | df-pw 4565 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
| 4 | df-sn 4590 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 5 | 2, 3, 4 | 3eqtr4i 2762 | 1 ⊢ 𝒫 ∅ = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-ss 3931 df-nul 4297 df-pw 4565 df-sn 4590 |
| This theorem is referenced by: p0ex 5339 pwfi 9268 ackbij1lem14 10185 fin1a2lem12 10364 0tsk 10708 hashbc 14418 incexclem 15802 sn0topon 22885 sn0cld 22977 ust0 24107 made0 27785 uhgr0vb 28999 uhgr0 29000 esumnul 34038 rankeq1o 36159 ssoninhaus 36436 sge00 46374 |
| Copyright terms: Public domain | W3C validator |