| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version | ||
| Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| pw0 | ⊢ 𝒫 ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4350 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
| 2 | 1 | abbii 2800 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
| 3 | df-pw 4551 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
| 4 | df-sn 4576 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 5 | 2, 3, 4 | 3eqtr4i 2766 | 1 ⊢ 𝒫 ∅ = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2711 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-dif 3901 df-ss 3915 df-nul 4283 df-pw 4551 df-sn 4576 |
| This theorem is referenced by: p0ex 5324 pwfi 9210 ackbij1lem14 10130 fin1a2lem12 10309 0tsk 10653 hashbc 14362 incexclem 15745 sn0topon 22914 sn0cld 23006 ust0 24136 made0 27819 uhgr0vb 29052 uhgr0 29053 esumnul 34082 r11 35126 rankeq1o 36236 ssoninhaus 36513 sge00 46498 |
| Copyright terms: Public domain | W3C validator |