Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snssi | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 4715 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
2 | 1 | ibi 266 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Copyright terms: Public domain | W3C validator |