| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscond | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐶 ∖ 𝐵) is contained in (𝐶 ∖ 𝐴). Deduction form of sscon 4088. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sscond | ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sscon 4088 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3894 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 |
| This theorem is referenced by: ssdif2d 4093 eldifeldifsn 4758 fin23lem26 10211 isercoll2 15571 fctop 22914 ntrss 22965 iunconnlem 23337 clsconn 23340 regr1lem 23649 blcld 24415 rrxdstprj1 25331 voliunlem1 25473 elrgspnsubrunlem2 33207 elrspunidl 33385 carsgclctunlem2 34324 salexct 46372 meaiininclem 46524 carageniuncllem2 46560 seposep 48957 |
| Copyright terms: Public domain | W3C validator |