MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscond Structured version   Visualization version   GIF version

Theorem sscond 4141
Description: If 𝐴 is contained in 𝐵, then (𝐶𝐵) is contained in (𝐶𝐴). Deduction form of sscon 4138. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssdifd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
sscond (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))

Proof of Theorem sscond
StepHypRef Expression
1 ssdifd.1 . 2 (𝜑𝐴𝐵)
2 sscon 4138 . 2 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
31, 2syl 17 1 (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3944  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-dif 3950  df-ss 3964
This theorem is referenced by:  ssdif2d  4143  eldifeldifsn  4820  fin23lem26  10368  isercoll2  15673  fctop  22998  ntrss  23050  iunconnlem  23422  clsconn  23425  regr1lem  23734  blcld  24505  rrxdstprj1  25428  voliunlem1  25570  elrspunidl  33303  carsgclctunlem2  34153  salexct  45955  meaiininclem  46107  carageniuncllem2  46143  seposep  48259
  Copyright terms: Public domain W3C validator