| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscond | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐶 ∖ 𝐵) is contained in (𝐶 ∖ 𝐴). Deduction form of sscon 4106. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sscond | ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sscon 4106 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3911 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 |
| This theorem is referenced by: ssdif2d 4111 eldifeldifsn 4775 fin23lem26 10278 isercoll2 15635 fctop 22891 ntrss 22942 iunconnlem 23314 clsconn 23317 regr1lem 23626 blcld 24393 rrxdstprj1 25309 voliunlem1 25451 elrgspnsubrunlem2 33199 elrspunidl 33399 carsgclctunlem2 34310 salexct 46332 meaiininclem 46484 carageniuncllem2 46520 seposep 48914 |
| Copyright terms: Public domain | W3C validator |