MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscond Structured version   Visualization version   GIF version

Theorem sscond 4072
Description: If 𝐴 is contained in 𝐵, then (𝐶𝐵) is contained in (𝐶𝐴). Deduction form of sscon 4069. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssdifd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
sscond (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))

Proof of Theorem sscond
StepHypRef Expression
1 ssdifd.1 . 2 (𝜑𝐴𝐵)
2 sscon 4069 . 2 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
31, 2syl 17 1 (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3880  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900
This theorem is referenced by:  ssdif2d  4074  eldifeldifsn  4741  fin23lem26  10012  isercoll2  15308  fctop  22062  ntrss  22114  iunconnlem  22486  clsconn  22489  regr1lem  22798  blcld  23567  rrxdstprj1  24478  voliunlem1  24619  elrspunidl  31508  carsgclctunlem2  32186  salexct  43763  meaiininclem  43914  carageniuncllem2  43950  seposep  46107
  Copyright terms: Public domain W3C validator