MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscond Structured version   Visualization version   GIF version

Theorem sscond 4169
Description: If 𝐴 is contained in 𝐵, then (𝐶𝐵) is contained in (𝐶𝐴). Deduction form of sscon 4166. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssdifd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
sscond (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))

Proof of Theorem sscond
StepHypRef Expression
1 ssdifd.1 . 2 (𝜑𝐴𝐵)
2 sscon 4166 . 2 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
31, 2syl 17 1 (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3973  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993
This theorem is referenced by:  ssdif2d  4171  eldifeldifsn  4836  fin23lem26  10394  isercoll2  15717  fctop  23032  ntrss  23084  iunconnlem  23456  clsconn  23459  regr1lem  23768  blcld  24539  rrxdstprj1  25462  voliunlem1  25604  elrspunidl  33421  carsgclctunlem2  34284  salexct  46255  meaiininclem  46407  carageniuncllem2  46443  seposep  48605
  Copyright terms: Public domain W3C validator