![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscond | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐶 ∖ 𝐵) is contained in (𝐶 ∖ 𝐴). Deduction form of sscon 4138. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sscond | ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sscon 4138 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3944 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-dif 3950 df-ss 3964 |
This theorem is referenced by: ssdif2d 4143 eldifeldifsn 4820 fin23lem26 10368 isercoll2 15673 fctop 22998 ntrss 23050 iunconnlem 23422 clsconn 23425 regr1lem 23734 blcld 24505 rrxdstprj1 25428 voliunlem1 25570 elrspunidl 33303 carsgclctunlem2 34153 salexct 45955 meaiininclem 46107 carageniuncllem2 46143 seposep 48259 |
Copyright terms: Public domain | W3C validator |