Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elif | Structured version Visualization version GIF version |
Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005.) |
Ref | Expression |
---|---|
elif | ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 ∈ 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2840 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴 ∈ 𝐵)) | |
2 | eleq2 2840 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | elimif 4460 | 1 ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 ∈ 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∈ wcel 2111 ifcif 4423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-if 4424 |
This theorem is referenced by: dfopif 4760 bj-imdirco 34911 clsk1indlem3 41147 |
Copyright terms: Public domain | W3C validator |