MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elif Structured version   Visualization version   GIF version

Theorem elif 4317
Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
elif (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴𝐵) ∨ (¬ 𝜑𝐴𝐶)))

Proof of Theorem elif
StepHypRef Expression
1 eleq2 2865 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴𝐵))
2 eleq2 2865 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴𝐶))
31, 2elimif 4311 1 (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴𝐵) ∨ (¬ 𝜑𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wa 385  wo 874  wcel 2157  ifcif 4275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2775
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2784  df-cleq 2790  df-clel 2793  df-if 4276
This theorem is referenced by:  clsk1indlem3  39111
  Copyright terms: Public domain W3C validator