Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elif Structured version   Visualization version   GIF version

Theorem elif 4466
 Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
elif (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴𝐵) ∨ (¬ 𝜑𝐴𝐶)))

Proof of Theorem elif
StepHypRef Expression
1 eleq2 2840 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴𝐵))
2 eleq2 2840 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ 𝐴𝐶))
31, 2elimif 4460 1 (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴𝐵) ∨ (¬ 𝜑𝐴𝐶)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∈ wcel 2111  ifcif 4423 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-if 4424 This theorem is referenced by:  dfopif  4760  bj-imdirco  34911  clsk1indlem3  41147
 Copyright terms: Public domain W3C validator