Step | Hyp | Ref
| Expression |
1 | | imaco 6144 |
. . . . . . . 8
⊢ ((𝑆 ∘ 𝑅) “ 𝑥) = (𝑆 “ (𝑅 “ 𝑥)) |
2 | 1 | eqeq1i 2743 |
. . . . . . 7
⊢ (((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧 ↔ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) |
3 | 2 | anbi2i 622 |
. . . . . 6
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) |
4 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
5 | | bj-imdirco.exa |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
6 | | bj-imdirco.exb |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
7 | 5, 6 | xpexd 7579 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
8 | | bj-imdirco.arg1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
9 | 7, 8 | ssexd 5243 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ V) |
10 | | imaexg 7736 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ V → (𝑅 “ 𝑥) ∈ V) |
11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 “ 𝑥) ∈ V) |
12 | | imass1 5998 |
. . . . . . . . . . . . 13
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅 “ 𝑥) ⊆ ((𝐴 × 𝐵) “ 𝑥)) |
13 | | xpima 6074 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × 𝐵) “ 𝑥) = if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) |
14 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ ∅) → 𝑢 ∈ ∅) |
15 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
(𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
16 | 14, 15 | orim12i 905 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ ∅) ∨ (¬ (𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ 𝐵)) → (𝑢 ∈ ∅ ∨ 𝑢 ∈ 𝐵)) |
17 | | elif 4499 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) ↔ (((𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ ∅) ∨ (¬ (𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ 𝐵))) |
18 | | elun 4079 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (∅ ∪ 𝐵) ↔ (𝑢 ∈ ∅ ∨ 𝑢 ∈ 𝐵)) |
19 | 16, 17, 18 | 3imtr4i 291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) → 𝑢 ∈ (∅ ∪ 𝐵)) |
20 | 19 | ssriv 3921 |
. . . . . . . . . . . . . . 15
⊢ if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) ⊆ (∅ ∪ 𝐵) |
21 | | 0ss 4327 |
. . . . . . . . . . . . . . . 16
⊢ ∅
⊆ 𝐵 |
22 | | ssid 3939 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 ⊆ 𝐵 |
23 | 21, 22 | unssi 4115 |
. . . . . . . . . . . . . . 15
⊢ (∅
∪ 𝐵) ⊆ 𝐵 |
24 | 20, 23 | sstri 3926 |
. . . . . . . . . . . . . 14
⊢ if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) ⊆ 𝐵 |
25 | 13, 24 | eqsstri 3951 |
. . . . . . . . . . . . 13
⊢ ((𝐴 × 𝐵) “ 𝑥) ⊆ 𝐵 |
26 | 12, 25 | sstrdi 3929 |
. . . . . . . . . . . 12
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅 “ 𝑥) ⊆ 𝐵) |
27 | 8, 26 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 “ 𝑥) ⊆ 𝐵) |
28 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 “ 𝑥) = (𝑅 “ 𝑥)) |
29 | 27, 28 | jca 511 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑅 “ 𝑥) ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = (𝑅 “ 𝑥))) |
30 | | sseq1 3942 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑅 “ 𝑥) → (𝑦 ⊆ 𝐵 ↔ (𝑅 “ 𝑥) ⊆ 𝐵)) |
31 | | eqeq2 2750 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑅 “ 𝑥) → ((𝑅 “ 𝑥) = 𝑦 ↔ (𝑅 “ 𝑥) = (𝑅 “ 𝑥))) |
32 | 30, 31 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑅 “ 𝑥) → ((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ↔ ((𝑅 “ 𝑥) ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = (𝑅 “ 𝑥)))) |
33 | 11, 29, 32 | spcedv 3527 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑦(𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) |
34 | 33 | biantrurd 532 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 “ (𝑅 “ 𝑥)) = 𝑧 ↔ (∃𝑦(𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
35 | | 19.41v 1954 |
. . . . . . . . 9
⊢
(∃𝑦((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ (∃𝑦(𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) |
36 | | anass 468 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
37 | 36 | exbii 1851 |
. . . . . . . . 9
⊢
(∃𝑦((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
38 | 35, 37 | bitr3i 276 |
. . . . . . . 8
⊢
((∃𝑦(𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
39 | 34, 38 | bitrdi 286 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 “ (𝑅 “ 𝑥)) = 𝑧 ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)))) |
40 | | imaeq2 5954 |
. . . . . . . . . . . . 13
⊢ ((𝑅 “ 𝑥) = 𝑦 → (𝑆 “ (𝑅 “ 𝑥)) = (𝑆 “ 𝑦)) |
41 | 40 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ ((𝑅 “ 𝑥) = 𝑦 → ((𝑆 “ (𝑅 “ 𝑥)) = 𝑧 ↔ (𝑆 “ 𝑦) = 𝑧)) |
42 | 41 | pm5.32i 574 |
. . . . . . . . . . 11
⊢ (((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ 𝑦) = 𝑧)) |
43 | 42 | bianass 638 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) ↔ ((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ 𝑦) = 𝑧)) |
44 | 43 | biancomi 462 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) ↔ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
45 | 44 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) ↔ ∃𝑦((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
46 | 45 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) ↔ ∃𝑦((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
47 | | pm4.24 563 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ 𝐵 ↔ (𝑦 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵)) |
48 | 47 | anbi1i 623 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ↔ ((𝑦 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)) |
49 | | anass 468 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ↔ (𝑦 ⊆ 𝐵 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
50 | 48, 49 | bitri 274 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ↔ (𝑦 ⊆ 𝐵 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
51 | 50 | anbi2i 622 |
. . . . . . . . . 10
⊢ (((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
52 | | an12 641 |
. . . . . . . . . 10
⊢ (((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
53 | 51, 52 | bitri 274 |
. . . . . . . . 9
⊢ (((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
54 | 53 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑦((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
55 | 54 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) |
56 | 39, 46, 55 | 3bitrd 304 |
. . . . . 6
⊢ (𝜑 → ((𝑆 “ (𝑅 “ 𝑥)) = 𝑧 ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) |
57 | 56 | anbi2d 628 |
. . . . 5
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))))) |
58 | | 19.42v 1958 |
. . . . . . 7
⊢
(∃𝑦((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) |
59 | | anass 468 |
. . . . . . . . 9
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ (𝑥 ⊆ 𝐴 ∧ (𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))))) |
60 | | ancom 460 |
. . . . . . . . . . 11
⊢ ((((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
61 | 60 | bianass 638 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ (((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵)) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
62 | | ancom 460 |
. . . . . . . . . . . 12
⊢
(((((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ↔ ((𝑅 “ 𝑥) = 𝑦 ∧ (((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵))) |
63 | | ancom 460 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ↔ (𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶)) |
64 | 63 | anbi1i 623 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑆 “ 𝑦) = 𝑧) ↔ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) |
65 | 64 | anbi1i 623 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ (((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
66 | | biid 260 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
67 | 66 | bianass 638 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
68 | | anass 468 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ ((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
69 | 67, 68 | bitr4i 277 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ (((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
70 | | anass 468 |
. . . . . . . . . . . . 13
⊢
(((((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ↔ (((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
71 | 65, 69, 70 | 3bitr4i 302 |
. . . . . . . . . . . 12
⊢ ((𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ((((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)) |
72 | | anass 468 |
. . . . . . . . . . . 12
⊢ ((((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵) ↔ ((𝑅 “ 𝑥) = 𝑦 ∧ (((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵))) |
73 | 62, 71, 72 | 3bitr4i 302 |
. . . . . . . . . . 11
⊢ ((𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ (((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵)) |
74 | 73 | anbi2i 622 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ (𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) ↔ (𝑥 ⊆ 𝐴 ∧ (((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵))) |
75 | | anass 468 |
. . . . . . . . . 10
⊢ ((((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
76 | 61, 74, 75 | 3bitr4i 302 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ (𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) ↔ (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))) |
77 | 59, 76 | bitri 274 |
. . . . . . . 8
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))) |
78 | 77 | exbii 1851 |
. . . . . . 7
⊢
(∃𝑦((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))) |
79 | 58, 78 | bitr3i 276 |
. . . . . 6
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))) |
80 | 79 | a1i 11 |
. . . . 5
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
81 | 4, 57, 80 | 3bitrd 304 |
. . . 4
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧) ↔ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
82 | 81 | opabbidv 5136 |
. . 3
⊢ (𝜑 → {〈𝑥, 𝑧〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧)} = {〈𝑥, 𝑧〉 ∣ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))}) |
83 | | bj-opabco 35286 |
. . 3
⊢
({〈𝑦, 𝑧〉 ∣ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)} ∘ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))} |
84 | 82, 83 | eqtr4di 2797 |
. 2
⊢ (𝜑 → {〈𝑥, 𝑧〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧)} = ({〈𝑦, 𝑧〉 ∣ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)} ∘ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)})) |
85 | | bj-imdirco.exc |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
86 | | bj-imdirco.arg2 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) |
87 | 86, 8 | coss12d 14611 |
. . . 4
⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵))) |
88 | | bj-xpcossxp 35287 |
. . . 4
⊢ ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐶) |
89 | 87, 88 | sstrdi 3929 |
. . 3
⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ (𝐴 × 𝐶)) |
90 | 5, 85, 89 | bj-imdirval2 35281 |
. 2
⊢ (𝜑 → ((𝐴𝒫*𝐶)‘(𝑆 ∘ 𝑅)) = {〈𝑥, 𝑧〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧)}) |
91 | 6, 85, 86 | bj-imdirval2 35281 |
. . 3
⊢ (𝜑 → ((𝐵𝒫*𝐶)‘𝑆) = {〈𝑦, 𝑧〉 ∣ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)}) |
92 | 5, 6, 8 | bj-imdirval2 35281 |
. . 3
⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
93 | 91, 92 | coeq12d 5762 |
. 2
⊢ (𝜑 → (((𝐵𝒫*𝐶)‘𝑆) ∘ ((𝐴𝒫*𝐵)‘𝑅)) = ({〈𝑦, 𝑧〉 ∣ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)} ∘ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)})) |
94 | 84, 90, 93 | 3eqtr4d 2788 |
1
⊢ (𝜑 → ((𝐴𝒫*𝐶)‘(𝑆 ∘ 𝑅)) = (((𝐵𝒫*𝐶)‘𝑆) ∘ ((𝐴𝒫*𝐵)‘𝑅))) |