| Step | Hyp | Ref
| Expression |
| 1 | | imaco 6271 |
. . . . . . . 8
⊢ ((𝑆 ∘ 𝑅) “ 𝑥) = (𝑆 “ (𝑅 “ 𝑥)) |
| 2 | 1 | eqeq1i 2742 |
. . . . . . 7
⊢ (((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧 ↔ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) |
| 3 | 2 | anbi2i 623 |
. . . . . 6
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
| 5 | | bj-imdirco.exa |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 6 | | bj-imdirco.exb |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 7 | 5, 6 | xpexd 7771 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 8 | | bj-imdirco.arg1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
| 9 | 7, 8 | ssexd 5324 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ V) |
| 10 | | imaexg 7935 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ V → (𝑅 “ 𝑥) ∈ V) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 “ 𝑥) ∈ V) |
| 12 | | imass1 6119 |
. . . . . . . . . . . . 13
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅 “ 𝑥) ⊆ ((𝐴 × 𝐵) “ 𝑥)) |
| 13 | | xpima 6202 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × 𝐵) “ 𝑥) = if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) |
| 14 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ ∅) → 𝑢 ∈ ∅) |
| 15 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
(𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
| 16 | 14, 15 | orim12i 909 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ ∅) ∨ (¬ (𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ 𝐵)) → (𝑢 ∈ ∅ ∨ 𝑢 ∈ 𝐵)) |
| 17 | | elif 4569 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) ↔ (((𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ ∅) ∨ (¬ (𝐴 ∩ 𝑥) = ∅ ∧ 𝑢 ∈ 𝐵))) |
| 18 | | elun 4153 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (∅ ∪ 𝐵) ↔ (𝑢 ∈ ∅ ∨ 𝑢 ∈ 𝐵)) |
| 19 | 16, 17, 18 | 3imtr4i 292 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) → 𝑢 ∈ (∅ ∪ 𝐵)) |
| 20 | 19 | ssriv 3987 |
. . . . . . . . . . . . . . 15
⊢ if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) ⊆ (∅ ∪ 𝐵) |
| 21 | | 0ss 4400 |
. . . . . . . . . . . . . . . 16
⊢ ∅
⊆ 𝐵 |
| 22 | | ssid 4006 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 ⊆ 𝐵 |
| 23 | 21, 22 | unssi 4191 |
. . . . . . . . . . . . . . 15
⊢ (∅
∪ 𝐵) ⊆ 𝐵 |
| 24 | 20, 23 | sstri 3993 |
. . . . . . . . . . . . . 14
⊢ if((𝐴 ∩ 𝑥) = ∅, ∅, 𝐵) ⊆ 𝐵 |
| 25 | 13, 24 | eqsstri 4030 |
. . . . . . . . . . . . 13
⊢ ((𝐴 × 𝐵) “ 𝑥) ⊆ 𝐵 |
| 26 | 12, 25 | sstrdi 3996 |
. . . . . . . . . . . 12
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅 “ 𝑥) ⊆ 𝐵) |
| 27 | 8, 26 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 “ 𝑥) ⊆ 𝐵) |
| 28 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 “ 𝑥) = (𝑅 “ 𝑥)) |
| 29 | 27, 28 | jca 511 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑅 “ 𝑥) ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = (𝑅 “ 𝑥))) |
| 30 | | sseq1 4009 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑅 “ 𝑥) → (𝑦 ⊆ 𝐵 ↔ (𝑅 “ 𝑥) ⊆ 𝐵)) |
| 31 | | eqeq2 2749 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑅 “ 𝑥) → ((𝑅 “ 𝑥) = 𝑦 ↔ (𝑅 “ 𝑥) = (𝑅 “ 𝑥))) |
| 32 | 30, 31 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑅 “ 𝑥) → ((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ↔ ((𝑅 “ 𝑥) ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = (𝑅 “ 𝑥)))) |
| 33 | 11, 29, 32 | spcedv 3598 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑦(𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) |
| 34 | 33 | biantrurd 532 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 “ (𝑅 “ 𝑥)) = 𝑧 ↔ (∃𝑦(𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
| 35 | | 19.41v 1949 |
. . . . . . . . 9
⊢
(∃𝑦((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ (∃𝑦(𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) |
| 36 | | anass 468 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
| 37 | 36 | exbii 1848 |
. . . . . . . . 9
⊢
(∃𝑦((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
| 38 | 35, 37 | bitr3i 277 |
. . . . . . . 8
⊢
((∃𝑦(𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧))) |
| 39 | 34, 38 | bitrdi 287 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 “ (𝑅 “ 𝑥)) = 𝑧 ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)))) |
| 40 | | imaeq2 6074 |
. . . . . . . . . . . . 13
⊢ ((𝑅 “ 𝑥) = 𝑦 → (𝑆 “ (𝑅 “ 𝑥)) = (𝑆 “ 𝑦)) |
| 41 | 40 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ ((𝑅 “ 𝑥) = 𝑦 → ((𝑆 “ (𝑅 “ 𝑥)) = 𝑧 ↔ (𝑆 “ 𝑦) = 𝑧)) |
| 42 | 41 | pm5.32i 574 |
. . . . . . . . . . 11
⊢ (((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ 𝑦) = 𝑧)) |
| 43 | 42 | bianass 642 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) ↔ ((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ∧ (𝑆 “ 𝑦) = 𝑧)) |
| 44 | 43 | biancomi 462 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) ↔ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
| 45 | 44 | exbii 1848 |
. . . . . . . 8
⊢
(∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) ↔ ∃𝑦((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
| 46 | 45 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧)) ↔ ∃𝑦((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
| 47 | | pm4.24 563 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ 𝐵 ↔ (𝑦 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵)) |
| 48 | 47 | anbi1i 624 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ↔ ((𝑦 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)) |
| 49 | | anass 468 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ↔ (𝑦 ⊆ 𝐵 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
| 50 | 48, 49 | bitri 275 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦) ↔ (𝑦 ⊆ 𝐵 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
| 51 | 50 | anbi2i 623 |
. . . . . . . . . 10
⊢ (((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
| 52 | | an12 645 |
. . . . . . . . . 10
⊢ (((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
| 53 | 51, 52 | bitri 275 |
. . . . . . . . 9
⊢ (((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
| 54 | 53 | exbii 1848 |
. . . . . . . 8
⊢
(∃𝑦((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
| 55 | 54 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) |
| 56 | 39, 46, 55 | 3bitrd 305 |
. . . . . 6
⊢ (𝜑 → ((𝑆 “ (𝑅 “ 𝑥)) = 𝑧 ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) |
| 57 | 56 | anbi2d 630 |
. . . . 5
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ (𝑅 “ 𝑥)) = 𝑧) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))))) |
| 58 | | 19.42v 1953 |
. . . . . . 7
⊢
(∃𝑦((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) |
| 59 | | anass 468 |
. . . . . . . . 9
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ (𝑥 ⊆ 𝐴 ∧ (𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))))) |
| 60 | | ancom 460 |
. . . . . . . . . . 11
⊢ ((((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
| 61 | 60 | bianass 642 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ (((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵)) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
| 62 | | ancom 460 |
. . . . . . . . . . . 12
⊢
(((((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ↔ ((𝑅 “ 𝑥) = 𝑦 ∧ (((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵))) |
| 63 | | ancom 460 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ↔ (𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶)) |
| 64 | 63 | anbi1i 624 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑆 “ 𝑦) = 𝑧) ↔ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) |
| 65 | 64 | anbi1i 624 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ (((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
| 66 | | biid 261 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) ↔ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
| 67 | 66 | bianass 642 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
| 68 | | anass 468 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)) ↔ ((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) |
| 69 | 67, 68 | bitr4i 278 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ (((𝑧 ⊆ 𝐶 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
| 70 | | anass 468 |
. . . . . . . . . . . . 13
⊢
(((((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ↔ (((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))) |
| 71 | 65, 69, 70 | 3bitr4i 303 |
. . . . . . . . . . . 12
⊢ ((𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ((((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)) |
| 72 | | anass 468 |
. . . . . . . . . . . 12
⊢ ((((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵) ↔ ((𝑅 “ 𝑥) = 𝑦 ∧ (((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧) ∧ 𝑦 ⊆ 𝐵))) |
| 73 | 62, 71, 72 | 3bitr4i 303 |
. . . . . . . . . . 11
⊢ ((𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ (((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵)) |
| 74 | 73 | anbi2i 623 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ (𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) ↔ (𝑥 ⊆ 𝐴 ∧ (((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ∧ 𝑦 ⊆ 𝐵))) |
| 75 | | anass 468 |
. . . . . . . . . 10
⊢ ((((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ ((𝑅 “ 𝑥) = 𝑦 ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
| 76 | 61, 74, 75 | 3bitr4i 303 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ (𝑧 ⊆ 𝐶 ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦))))) ↔ (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))) |
| 77 | 59, 76 | bitri 275 |
. . . . . . . 8
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))) |
| 78 | 77 | exbii 1848 |
. . . . . . 7
⊢
(∃𝑦((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))) |
| 79 | 58, 78 | bitr3i 277 |
. . . . . 6
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))) |
| 80 | 79 | a1i 11 |
. . . . 5
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ∃𝑦(𝑦 ⊆ 𝐵 ∧ ((𝑆 “ 𝑦) = 𝑧 ∧ (𝑦 ⊆ 𝐵 ∧ (𝑅 “ 𝑥) = 𝑦)))) ↔ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
| 81 | 4, 57, 80 | 3bitrd 305 |
. . . 4
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧) ↔ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)))) |
| 82 | 81 | opabbidv 5209 |
. . 3
⊢ (𝜑 → {〈𝑥, 𝑧〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧)} = {〈𝑥, 𝑧〉 ∣ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))}) |
| 83 | | bj-opabco 37189 |
. . 3
⊢
({〈𝑦, 𝑧〉 ∣ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)} ∘ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ∧ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧))} |
| 84 | 82, 83 | eqtr4di 2795 |
. 2
⊢ (𝜑 → {〈𝑥, 𝑧〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧)} = ({〈𝑦, 𝑧〉 ∣ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)} ∘ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)})) |
| 85 | | bj-imdirco.exc |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| 86 | | bj-imdirco.arg2 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) |
| 87 | 86, 8 | coss12d 15011 |
. . . 4
⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵))) |
| 88 | | bj-xpcossxp 37190 |
. . . 4
⊢ ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐶) |
| 89 | 87, 88 | sstrdi 3996 |
. . 3
⊢ (𝜑 → (𝑆 ∘ 𝑅) ⊆ (𝐴 × 𝐶)) |
| 90 | 5, 85, 89 | bj-imdirval2 37184 |
. 2
⊢ (𝜑 → ((𝐴𝒫*𝐶)‘(𝑆 ∘ 𝑅)) = {〈𝑥, 𝑧〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐶) ∧ ((𝑆 ∘ 𝑅) “ 𝑥) = 𝑧)}) |
| 91 | 6, 85, 86 | bj-imdirval2 37184 |
. . 3
⊢ (𝜑 → ((𝐵𝒫*𝐶)‘𝑆) = {〈𝑦, 𝑧〉 ∣ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)}) |
| 92 | 5, 6, 8 | bj-imdirval2 37184 |
. . 3
⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
| 93 | 91, 92 | coeq12d 5875 |
. 2
⊢ (𝜑 → (((𝐵𝒫*𝐶)‘𝑆) ∘ ((𝐴𝒫*𝐵)‘𝑅)) = ({〈𝑦, 𝑧〉 ∣ ((𝑦 ⊆ 𝐵 ∧ 𝑧 ⊆ 𝐶) ∧ (𝑆 “ 𝑦) = 𝑧)} ∘ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)})) |
| 94 | 84, 90, 93 | 3eqtr4d 2787 |
1
⊢ (𝜑 → ((𝐴𝒫*𝐶)‘(𝑆 ∘ 𝑅)) = (((𝐵𝒫*𝐶)‘𝑆) ∘ ((𝐴𝒫*𝐵)‘𝑅))) |