Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifel | Structured version Visualization version GIF version |
Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005.) |
Ref | Expression |
---|---|
ifel | ⊢ (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ ((𝜑 ∧ 𝐴 ∈ 𝐶) ∨ (¬ 𝜑 ∧ 𝐵 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | eleq1 2826 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | elimif 4493 | 1 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ ((𝜑 ∧ 𝐴 ∈ 𝐶) ∨ (¬ 𝜑 ∧ 𝐵 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: clwlkclwwlklem2a 28263 smatrcl 31648 clsk1independent 41545 |
Copyright terms: Public domain | W3C validator |