| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifel | Structured version Visualization version GIF version | ||
| Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005.) |
| Ref | Expression |
|---|---|
| ifel | ⊢ (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ ((𝜑 ∧ 𝐴 ∈ 𝐶) ∨ (¬ 𝜑 ∧ 𝐵 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 2 | eleq1 2817 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | elimif 4528 | 1 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ ((𝜑 ∧ 𝐴 ∈ 𝐶) ∨ (¬ 𝜑 ∧ 𝐵 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ifcif 4490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4491 |
| This theorem is referenced by: clwlkclwwlklem2a 29933 smatrcl 33792 clsk1independent 44028 |
| Copyright terms: Public domain | W3C validator |