MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifel Structured version   Visualization version   GIF version

Theorem ifel 4535
Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005.)
Assertion
Ref Expression
ifel (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ ((𝜑𝐴𝐶) ∨ (¬ 𝜑𝐵𝐶)))

Proof of Theorem ifel
StepHypRef Expression
1 eleq1 2817 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵) ∈ 𝐶𝐴𝐶))
2 eleq1 2817 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵) ∈ 𝐶𝐵𝐶))
31, 2elimif 4528 1 (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ ((𝜑𝐴𝐶) ∨ (¬ 𝜑𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  wcel 2109  ifcif 4490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-if 4491
This theorem is referenced by:  clwlkclwwlklem2a  29933  smatrcl  33792  clsk1independent  44028
  Copyright terms: Public domain W3C validator