MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifel Structured version   Visualization version   GIF version

Theorem ifel 4503
Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005.)
Assertion
Ref Expression
ifel (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ ((𝜑𝐴𝐶) ∨ (¬ 𝜑𝐵𝐶)))

Proof of Theorem ifel
StepHypRef Expression
1 eleq1 2826 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (if(𝜑, 𝐴, 𝐵) ∈ 𝐶𝐴𝐶))
2 eleq1 2826 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (if(𝜑, 𝐴, 𝐵) ∈ 𝐶𝐵𝐶))
31, 2elimif 4496 1 (if(𝜑, 𝐴, 𝐵) ∈ 𝐶 ↔ ((𝜑𝐴𝐶) ∨ (¬ 𝜑𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  wcel 2106  ifcif 4459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-if 4460
This theorem is referenced by:  clwlkclwwlklem2a  28362  smatrcl  31746  clsk1independent  41656
  Copyright terms: Public domain W3C validator