Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfiss Structured version   Visualization version   GIF version

Theorem safesnsupfiss 43428
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfiss.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfiss.finite (𝜑𝐵 ∈ Fin)
safesnsupfiss.subset (𝜑𝐵𝐴)
safesnsupfiss.ordered (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
safesnsupfiss (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵)

Proof of Theorem safesnsupfiss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elif 4569 . . 3 (𝑥 ∈ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ↔ ((𝑂𝐵𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) ∨ (¬ 𝑂𝐵𝑥𝐵)))
2 elsni 4643 . . . . . 6 (𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)} → 𝑥 = sup(𝐵, 𝐴, 𝑅))
3 simpr 484 . . . . . . . 8 (((𝜑𝑂𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → 𝑥 = sup(𝐵, 𝐴, 𝑅))
4 safesnsupfiss.ordered . . . . . . . . . . 11 (𝜑𝑅 Or 𝐴)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝑅 Or 𝐴)
6 safesnsupfiss.finite . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
76adantr 480 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵 ∈ Fin)
8 simpr 484 . . . . . . . . . . 11 ((𝜑𝑂𝐵) → 𝑂𝐵)
9 safesnsupfiss.small . . . . . . . . . . . . 13 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
10 0elon 6438 . . . . . . . . . . . . . . 15 ∅ ∈ On
11 eleq1 2829 . . . . . . . . . . . . . . 15 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
1210, 11mpbiri 258 . . . . . . . . . . . . . 14 (𝑂 = ∅ → 𝑂 ∈ On)
13 1on 8518 . . . . . . . . . . . . . . 15 1o ∈ On
14 eleq1 2829 . . . . . . . . . . . . . . 15 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
1513, 14mpbiri 258 . . . . . . . . . . . . . 14 (𝑂 = 1o𝑂 ∈ On)
1612, 15jaoi 858 . . . . . . . . . . . . 13 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
179, 16syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ On)
1817adantr 480 . . . . . . . . . . 11 ((𝜑𝑂𝐵) → 𝑂 ∈ On)
198, 18sdomne0d 43427 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵 ≠ ∅)
20 safesnsupfiss.subset . . . . . . . . . . 11 (𝜑𝐵𝐴)
2120adantr 480 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵𝐴)
22 fisupcl 9509 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
235, 7, 19, 21, 22syl13anc 1374 . . . . . . . . 9 ((𝜑𝑂𝐵) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
2423adantr 480 . . . . . . . 8 (((𝜑𝑂𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
253, 24eqeltrd 2841 . . . . . . 7 (((𝜑𝑂𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → 𝑥𝐵)
2625ex 412 . . . . . 6 ((𝜑𝑂𝐵) → (𝑥 = sup(𝐵, 𝐴, 𝑅) → 𝑥𝐵))
272, 26syl5 34 . . . . 5 ((𝜑𝑂𝐵) → (𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)} → 𝑥𝐵))
2827expimpd 453 . . . 4 (𝜑 → ((𝑂𝐵𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) → 𝑥𝐵))
29 simpr 484 . . . . 5 ((¬ 𝑂𝐵𝑥𝐵) → 𝑥𝐵)
3029a1i 11 . . . 4 (𝜑 → ((¬ 𝑂𝐵𝑥𝐵) → 𝑥𝐵))
3128, 30jaod 860 . . 3 (𝜑 → (((𝑂𝐵𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) ∨ (¬ 𝑂𝐵𝑥𝐵)) → 𝑥𝐵))
321, 31biimtrid 242 . 2 (𝜑 → (𝑥 ∈ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → 𝑥𝐵))
3332ssrdv 3989 1 (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wss 3951  c0 4333  ifcif 4525  {csn 4626   class class class wbr 5143   Or wor 5591  Oncon0 6384  1oc1o 8499  csdm 8984  Fincfn 8985  supcsup 9480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482
This theorem is referenced by:  safesnsupfiub  43429
  Copyright terms: Public domain W3C validator