| Step | Hyp | Ref
| Expression |
| 1 | | elif 4544 |
. . 3
⊢ (𝑥 ∈ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ↔ ((𝑂 ≺ 𝐵 ∧ 𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) ∨ (¬ 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ 𝐵))) |
| 2 | | elsni 4618 |
. . . . . 6
⊢ (𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)} → 𝑥 = sup(𝐵, 𝐴, 𝑅)) |
| 3 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑂 ≺ 𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → 𝑥 = sup(𝐵, 𝐴, 𝑅)) |
| 4 | | safesnsupfiss.ordered |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 Or 𝐴) |
| 5 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → 𝑅 Or 𝐴) |
| 6 | | safesnsupfiss.finite |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → 𝐵 ∈ Fin) |
| 8 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → 𝑂 ≺ 𝐵) |
| 9 | | safesnsupfiss.small |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) |
| 10 | | 0elon 6407 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ On |
| 11 | | eleq1 2822 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈
On)) |
| 12 | 10, 11 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑂 = ∅ → 𝑂 ∈ On) |
| 13 | | 1on 8492 |
. . . . . . . . . . . . . . 15
⊢
1o ∈ On |
| 14 | | eleq1 2822 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 = 1o → (𝑂 ∈ On ↔ 1o
∈ On)) |
| 15 | 13, 14 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑂 = 1o → 𝑂 ∈ On) |
| 16 | 12, 15 | jaoi 857 |
. . . . . . . . . . . . 13
⊢ ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On) |
| 17 | 9, 16 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑂 ∈ On) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → 𝑂 ∈ On) |
| 19 | 8, 18 | sdomne0d 43438 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → 𝐵 ≠ ∅) |
| 20 | | safesnsupfiss.subset |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 21 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → 𝐵 ⊆ 𝐴) |
| 22 | | fisupcl 9482 |
. . . . . . . . . 10
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
| 23 | 5, 7, 19, 21, 22 | syl13anc 1374 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
| 24 | 23 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑂 ≺ 𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
| 25 | 3, 24 | eqeltrd 2834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑂 ≺ 𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → 𝑥 ∈ 𝐵) |
| 26 | 25 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → (𝑥 = sup(𝐵, 𝐴, 𝑅) → 𝑥 ∈ 𝐵)) |
| 27 | 2, 26 | syl5 34 |
. . . . 5
⊢ ((𝜑 ∧ 𝑂 ≺ 𝐵) → (𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)} → 𝑥 ∈ 𝐵)) |
| 28 | 27 | expimpd 453 |
. . . 4
⊢ (𝜑 → ((𝑂 ≺ 𝐵 ∧ 𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) → 𝑥 ∈ 𝐵)) |
| 29 | | simpr 484 |
. . . . 5
⊢ ((¬
𝑂 ≺ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → ((¬ 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 31 | 28, 30 | jaod 859 |
. . 3
⊢ (𝜑 → (((𝑂 ≺ 𝐵 ∧ 𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) ∨ (¬ 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵)) |
| 32 | 1, 31 | biimtrid 242 |
. 2
⊢ (𝜑 → (𝑥 ∈ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → 𝑥 ∈ 𝐵)) |
| 33 | 32 | ssrdv 3964 |
1
⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵) |