Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfiss Structured version   Visualization version   GIF version

Theorem safesnsupfiss 41761
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfiss.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfiss.finite (𝜑𝐵 ∈ Fin)
safesnsupfiss.subset (𝜑𝐵𝐴)
safesnsupfiss.ordered (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
safesnsupfiss (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵)

Proof of Theorem safesnsupfiss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elif 4534 . . 3 (𝑥 ∈ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ↔ ((𝑂𝐵𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) ∨ (¬ 𝑂𝐵𝑥𝐵)))
2 elsni 4608 . . . . . 6 (𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)} → 𝑥 = sup(𝐵, 𝐴, 𝑅))
3 simpr 486 . . . . . . . 8 (((𝜑𝑂𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → 𝑥 = sup(𝐵, 𝐴, 𝑅))
4 safesnsupfiss.ordered . . . . . . . . . . 11 (𝜑𝑅 Or 𝐴)
54adantr 482 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝑅 Or 𝐴)
6 safesnsupfiss.finite . . . . . . . . . . 11 (𝜑𝐵 ∈ Fin)
76adantr 482 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵 ∈ Fin)
8 simpr 486 . . . . . . . . . . 11 ((𝜑𝑂𝐵) → 𝑂𝐵)
9 safesnsupfiss.small . . . . . . . . . . . . 13 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
10 0elon 6376 . . . . . . . . . . . . . . 15 ∅ ∈ On
11 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
1210, 11mpbiri 258 . . . . . . . . . . . . . 14 (𝑂 = ∅ → 𝑂 ∈ On)
13 1on 8429 . . . . . . . . . . . . . . 15 1o ∈ On
14 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
1513, 14mpbiri 258 . . . . . . . . . . . . . 14 (𝑂 = 1o𝑂 ∈ On)
1612, 15jaoi 856 . . . . . . . . . . . . 13 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
179, 16syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ On)
1817adantr 482 . . . . . . . . . . 11 ((𝜑𝑂𝐵) → 𝑂 ∈ On)
198, 18sdomne0d 41760 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵 ≠ ∅)
20 safesnsupfiss.subset . . . . . . . . . . 11 (𝜑𝐵𝐴)
2120adantr 482 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵𝐴)
22 fisupcl 9412 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
235, 7, 19, 21, 22syl13anc 1373 . . . . . . . . 9 ((𝜑𝑂𝐵) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
2423adantr 482 . . . . . . . 8 (((𝜑𝑂𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
253, 24eqeltrd 2838 . . . . . . 7 (((𝜑𝑂𝐵) ∧ 𝑥 = sup(𝐵, 𝐴, 𝑅)) → 𝑥𝐵)
2625ex 414 . . . . . 6 ((𝜑𝑂𝐵) → (𝑥 = sup(𝐵, 𝐴, 𝑅) → 𝑥𝐵))
272, 26syl5 34 . . . . 5 ((𝜑𝑂𝐵) → (𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)} → 𝑥𝐵))
2827expimpd 455 . . . 4 (𝜑 → ((𝑂𝐵𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) → 𝑥𝐵))
29 simpr 486 . . . . 5 ((¬ 𝑂𝐵𝑥𝐵) → 𝑥𝐵)
3029a1i 11 . . . 4 (𝜑 → ((¬ 𝑂𝐵𝑥𝐵) → 𝑥𝐵))
3128, 30jaod 858 . . 3 (𝜑 → (((𝑂𝐵𝑥 ∈ {sup(𝐵, 𝐴, 𝑅)}) ∨ (¬ 𝑂𝐵𝑥𝐵)) → 𝑥𝐵))
321, 31biimtrid 241 . 2 (𝜑 → (𝑥 ∈ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → 𝑥𝐵))
3332ssrdv 3955 1 (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2944  wss 3915  c0 4287  ifcif 4491  {csn 4591   class class class wbr 5110   Or wor 5549  Oncon0 6322  1oc1o 8410  csdm 8889  Fincfn 8890  supcsup 9383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-om 7808  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385
This theorem is referenced by:  safesnsupfiub  41762
  Copyright terms: Public domain W3C validator