MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimdhyp Structured version   Visualization version   GIF version

Theorem elimdhyp 4526
Description: Version of elimhyp 4521 where the hypothesis is deduced from the final antecedent. See divalg 16040 for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.)
Hypotheses
Ref Expression
elimdhyp.1 (𝜑𝜓)
elimdhyp.2 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜒))
elimdhyp.3 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃𝜒))
elimdhyp.4 𝜃
Assertion
Ref Expression
elimdhyp 𝜒

Proof of Theorem elimdhyp
StepHypRef Expression
1 elimdhyp.1 . . 3 (𝜑𝜓)
2 iftrue 4462 . . . . 5 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
32eqcomd 2744 . . . 4 (𝜑𝐴 = if(𝜑, 𝐴, 𝐵))
4 elimdhyp.2 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜒))
53, 4syl 17 . . 3 (𝜑 → (𝜓𝜒))
61, 5mpbid 231 . 2 (𝜑𝜒)
7 elimdhyp.4 . . 3 𝜃
8 iffalse 4465 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
98eqcomd 2744 . . . 4 𝜑𝐵 = if(𝜑, 𝐴, 𝐵))
10 elimdhyp.3 . . . 4 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃𝜒))
119, 10syl 17 . . 3 𝜑 → (𝜃𝜒))
127, 11mpbii 232 . 2 𝜑𝜒)
136, 12pm2.61i 182 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  ifcif 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-if 4457
This theorem is referenced by:  divalg  16040
  Copyright terms: Public domain W3C validator