|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elimdhyp | Structured version Visualization version GIF version | ||
| Description: Version of elimhyp 4591 where the hypothesis is deduced from the final antecedent. See divalg 16440 for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.) | 
| Ref | Expression | 
|---|---|
| elimdhyp.1 | ⊢ (𝜑 → 𝜓) | 
| elimdhyp.2 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | 
| elimdhyp.3 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃 ↔ 𝜒)) | 
| elimdhyp.4 | ⊢ 𝜃 | 
| Ref | Expression | 
|---|---|
| elimdhyp | ⊢ 𝜒 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elimdhyp.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | iftrue 4531 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) | 
| 4 | elimdhyp.2 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| 6 | 1, 5 | mpbid 232 | . 2 ⊢ (𝜑 → 𝜒) | 
| 7 | elimdhyp.4 | . . 3 ⊢ 𝜃 | |
| 8 | iffalse 4534 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 9 | 8 | eqcomd 2743 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) | 
| 10 | elimdhyp.3 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃 ↔ 𝜒)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜃 ↔ 𝜒)) | 
| 12 | 7, 11 | mpbii 233 | . 2 ⊢ (¬ 𝜑 → 𝜒) | 
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ 𝜒 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ifcif 4525 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-if 4526 | 
| This theorem is referenced by: divalg 16440 | 
| Copyright terms: Public domain | W3C validator |