Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimdhyp | Structured version Visualization version GIF version |
Description: Version of elimhyp 4521 where the hypothesis is deduced from the final antecedent. See divalg 16040 for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
elimdhyp.1 | ⊢ (𝜑 → 𝜓) |
elimdhyp.2 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
elimdhyp.3 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃 ↔ 𝜒)) |
elimdhyp.4 | ⊢ 𝜃 |
Ref | Expression |
---|---|
elimdhyp | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdhyp.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | iftrue 4462 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | elimdhyp.2 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbid 231 | . 2 ⊢ (𝜑 → 𝜒) |
7 | elimdhyp.4 | . . 3 ⊢ 𝜃 | |
8 | iffalse 4465 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
9 | 8 | eqcomd 2744 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
10 | elimdhyp.3 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜃 ↔ 𝜒)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜃 ↔ 𝜒)) |
12 | 7, 11 | mpbii 232 | . 2 ⊢ (¬ 𝜑 → 𝜒) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: divalg 16040 |
Copyright terms: Public domain | W3C validator |