MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalg Structured version   Visualization version   GIF version

Theorem divalg 16373
Description: The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. The proof does not use / or or mod. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divalg ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalg
StepHypRef Expression
1 eqeq1 2733 . . . . . 6 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)))
213anbi3d 1444 . . . . 5 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
32rexbidv 3157 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
43reubidv 3372 . . 3 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
5 fveq2 6858 . . . . . . 7 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (abs‘𝐷) = (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)))
65breq2d 5119 . . . . . 6 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝑟 < (abs‘𝐷) ↔ 𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1))))
7 oveq2 7395 . . . . . . . 8 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝑞 · 𝐷) = (𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)))
87oveq1d 7402 . . . . . . 7 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))
98eqeq2d 2740 . . . . . 6 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟) ↔ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟)))
106, 93anbi23d 1441 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
1110rexbidv 3157 . . . 4 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
1211reubidv 3372 . . 3 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
13 1z 12563 . . . . 5 1 ∈ ℤ
1413elimel 4558 . . . 4 if(𝑁 ∈ ℤ, 𝑁, 1) ∈ ℤ
15 simpl 482 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → 𝐷 ∈ ℤ)
16 eleq1 2816 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝐷 ∈ ℤ ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ))
17 eleq1 2816 . . . . 5 (1 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (1 ∈ ℤ ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ))
1815, 16, 17, 13elimdhyp 4559 . . . 4 if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ
19 simpr 484 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → 𝐷 ≠ 0)
20 neeq1 2987 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝐷 ≠ 0 ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0))
21 neeq1 2987 . . . . 5 (1 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (1 ≠ 0 ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0))
22 ax-1ne0 11137 . . . . 5 1 ≠ 0
2319, 20, 21, 22elimdhyp 4559 . . . 4 if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0
24 eqid 2729 . . . 4 {𝑟 ∈ ℕ0 ∣ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∥ (if(𝑁 ∈ ℤ, 𝑁, 1) − 𝑟)} = {𝑟 ∈ ℕ0 ∣ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∥ (if(𝑁 ∈ ℤ, 𝑁, 1) − 𝑟)}
2514, 18, 23, 24divalglem10 16372 . . 3 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))
264, 12, 25dedth2h 4548 . 2 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℤ ∧ 𝐷 ≠ 0)) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
27263impb 1114 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ∃!wreu 3352  {crab 3405  ifcif 4488   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  0cn0 12442  cz 12529  abscabs 15200  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223
This theorem is referenced by:  divalg2  16375
  Copyright terms: Public domain W3C validator