MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalg Structured version   Visualization version   GIF version

Theorem divalg 16380
Description: The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. The proof does not use / or or mod. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divalg ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalg
StepHypRef Expression
1 eqeq1 2734 . . . . . 6 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)))
213anbi3d 1444 . . . . 5 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
32rexbidv 3158 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
43reubidv 3374 . . 3 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
5 fveq2 6861 . . . . . . 7 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (abs‘𝐷) = (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)))
65breq2d 5122 . . . . . 6 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝑟 < (abs‘𝐷) ↔ 𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1))))
7 oveq2 7398 . . . . . . . 8 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝑞 · 𝐷) = (𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)))
87oveq1d 7405 . . . . . . 7 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))
98eqeq2d 2741 . . . . . 6 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟) ↔ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟)))
106, 93anbi23d 1441 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
1110rexbidv 3158 . . . 4 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
1211reubidv 3374 . . 3 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
13 1z 12570 . . . . 5 1 ∈ ℤ
1413elimel 4561 . . . 4 if(𝑁 ∈ ℤ, 𝑁, 1) ∈ ℤ
15 simpl 482 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → 𝐷 ∈ ℤ)
16 eleq1 2817 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝐷 ∈ ℤ ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ))
17 eleq1 2817 . . . . 5 (1 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (1 ∈ ℤ ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ))
1815, 16, 17, 13elimdhyp 4562 . . . 4 if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ
19 simpr 484 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → 𝐷 ≠ 0)
20 neeq1 2988 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝐷 ≠ 0 ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0))
21 neeq1 2988 . . . . 5 (1 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (1 ≠ 0 ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0))
22 ax-1ne0 11144 . . . . 5 1 ≠ 0
2319, 20, 21, 22elimdhyp 4562 . . . 4 if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0
24 eqid 2730 . . . 4 {𝑟 ∈ ℕ0 ∣ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∥ (if(𝑁 ∈ ℤ, 𝑁, 1) − 𝑟)} = {𝑟 ∈ ℕ0 ∣ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∥ (if(𝑁 ∈ ℤ, 𝑁, 1) − 𝑟)}
2514, 18, 23, 24divalglem10 16379 . . 3 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))
264, 12, 25dedth2h 4551 . 2 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℤ ∧ 𝐷 ≠ 0)) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
27263impb 1114 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  ∃!wreu 3354  {crab 3408  ifcif 4491   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  0cn0 12449  cz 12536  abscabs 15207  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230
This theorem is referenced by:  divalg2  16382
  Copyright terms: Public domain W3C validator