MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalg Structured version   Visualization version   GIF version

Theorem divalg 16314
Description: The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. The proof does not use / or or mod. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divalg ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalg
StepHypRef Expression
1 eqeq1 2733 . . . . . 6 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)))
213anbi3d 1444 . . . . 5 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
32rexbidv 3153 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
43reubidv 3361 . . 3 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
5 fveq2 6822 . . . . . . 7 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (abs‘𝐷) = (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)))
65breq2d 5104 . . . . . 6 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝑟 < (abs‘𝐷) ↔ 𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1))))
7 oveq2 7357 . . . . . . . 8 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝑞 · 𝐷) = (𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)))
87oveq1d 7364 . . . . . . 7 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))
98eqeq2d 2740 . . . . . 6 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟) ↔ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟)))
106, 93anbi23d 1441 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
1110rexbidv 3153 . . . 4 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
1211reubidv 3361 . . 3 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
13 1z 12505 . . . . 5 1 ∈ ℤ
1413elimel 4546 . . . 4 if(𝑁 ∈ ℤ, 𝑁, 1) ∈ ℤ
15 simpl 482 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → 𝐷 ∈ ℤ)
16 eleq1 2816 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝐷 ∈ ℤ ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ))
17 eleq1 2816 . . . . 5 (1 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (1 ∈ ℤ ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ))
1815, 16, 17, 13elimdhyp 4547 . . . 4 if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ
19 simpr 484 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → 𝐷 ≠ 0)
20 neeq1 2987 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝐷 ≠ 0 ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0))
21 neeq1 2987 . . . . 5 (1 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (1 ≠ 0 ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0))
22 ax-1ne0 11078 . . . . 5 1 ≠ 0
2319, 20, 21, 22elimdhyp 4547 . . . 4 if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0
24 eqid 2729 . . . 4 {𝑟 ∈ ℕ0 ∣ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∥ (if(𝑁 ∈ ℤ, 𝑁, 1) − 𝑟)} = {𝑟 ∈ ℕ0 ∣ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∥ (if(𝑁 ∈ ℤ, 𝑁, 1) − 𝑟)}
2514, 18, 23, 24divalglem10 16313 . . 3 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))
264, 12, 25dedth2h 4536 . 2 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℤ ∧ 𝐷 ≠ 0)) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
27263impb 1114 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ∃!wreu 3341  {crab 3394  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  0cn0 12384  cz 12471  abscabs 15141  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by:  divalg2  16316
  Copyright terms: Public domain W3C validator