MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalg Structured version   Visualization version   GIF version

Theorem divalg 16436
Description: The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. The proof does not use / or or mod. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divalg ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalg
StepHypRef Expression
1 eqeq1 2738 . . . . . 6 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)))
213anbi3d 1441 . . . . 5 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
32rexbidv 3176 . . . 4 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
43reubidv 3395 . . 3 (𝑁 = if(𝑁 ∈ ℤ, 𝑁, 1) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟))))
5 fveq2 6906 . . . . . . 7 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (abs‘𝐷) = (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)))
65breq2d 5159 . . . . . 6 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝑟 < (abs‘𝐷) ↔ 𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1))))
7 oveq2 7438 . . . . . . . 8 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝑞 · 𝐷) = (𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)))
87oveq1d 7445 . . . . . . 7 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))
98eqeq2d 2745 . . . . . 6 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟) ↔ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟)))
106, 93anbi23d 1438 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
1110rexbidv 3176 . . . 4 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
1211reubidv 3395 . . 3 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))))
13 1z 12644 . . . . 5 1 ∈ ℤ
1413elimel 4599 . . . 4 if(𝑁 ∈ ℤ, 𝑁, 1) ∈ ℤ
15 simpl 482 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → 𝐷 ∈ ℤ)
16 eleq1 2826 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝐷 ∈ ℤ ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ))
17 eleq1 2826 . . . . 5 (1 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (1 ∈ ℤ ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ))
1815, 16, 17, 13elimdhyp 4600 . . . 4 if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∈ ℤ
19 simpr 484 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → 𝐷 ≠ 0)
20 neeq1 3000 . . . . 5 (𝐷 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (𝐷 ≠ 0 ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0))
21 neeq1 3000 . . . . 5 (1 = if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) → (1 ≠ 0 ↔ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0))
22 ax-1ne0 11221 . . . . 5 1 ≠ 0
2319, 20, 21, 22elimdhyp 4600 . . . 4 if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ≠ 0
24 eqid 2734 . . . 4 {𝑟 ∈ ℕ0 ∣ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∥ (if(𝑁 ∈ ℤ, 𝑁, 1) − 𝑟)} = {𝑟 ∈ ℕ0 ∣ if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1) ∥ (if(𝑁 ∈ ℤ, 𝑁, 1) − 𝑟)}
2514, 18, 23, 24divalglem10 16435 . . 3 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) ∧ if(𝑁 ∈ ℤ, 𝑁, 1) = ((𝑞 · if((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0), 𝐷, 1)) + 𝑟))
264, 12, 25dedth2h 4589 . 2 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℤ ∧ 𝐷 ≠ 0)) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
27263impb 1114 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067  ∃!wreu 3375  {crab 3432  ifcif 4530   class class class wbr 5147  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  0cn0 12523  cz 12610  abscabs 15269  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287
This theorem is referenced by:  divalg2  16438
  Copyright terms: Public domain W3C validator