![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version |
Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2822 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2822 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 1, 2, 3 | elimhyp 4594 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: fprg 7153 orduninsuc 7832 oawordeu 8555 oeoa 8597 omopth 8661 unfilem3 9312 inar1 10770 supsr 11107 renegcl 11523 peano5uzti 12652 eluzaddOLD 12857 eluzsubOLD 12858 ltweuz 13926 uzenom 13929 seqfn 13978 seq1 13979 seqp1 13981 sqeqor 14180 binom2 14181 nn0opth2 14232 faclbnd4lem2 14254 hashxp 14394 dvdsle 16253 divalglem7 16342 divalg 16346 gcdaddm 16466 smadiadetr 22177 iblcnlem 25306 ax5seglem8 28225 elimnv 29967 elimnvu 29968 nmlno0i 30078 nmblolbi 30084 blocn 30091 elimphu 30105 ubth 30157 htth 30202 ifhvhv0 30306 normlem6 30399 norm-iii 30424 norm3lemt 30436 ifchhv 30528 hhssablo 30547 hhssnvt 30549 shscl 30602 shslej 30664 shincl 30665 omlsii 30687 pjoml 30720 pjoc2 30723 chm0 30775 chne0 30778 chocin 30779 chj0 30781 chlejb1 30796 chnle 30798 ledi 30824 h1datom 30866 cmbr3 30892 pjoml2 30895 cmcm 30898 cmcm3 30899 lecm 30901 pjmuli 30973 pjige0 30975 pjhfo 30990 pj11 30998 eigre 31119 eigorth 31122 hoddi 31274 nmlnop0 31282 lnopeq 31293 lnopunilem2 31295 nmbdoplb 31309 nmcopex 31313 nmcoplb 31314 lnopcon 31319 lnfn0 31331 lnfnmul 31332 nmcfnex 31337 nmcfnlb 31338 lnfncon 31340 riesz4 31348 riesz1 31349 cnlnadjeu 31362 pjhmop 31434 pjidmco 31465 mdslmd1lem3 31611 mdslmd1lem4 31612 csmdsymi 31618 hatomic 31644 atord 31672 atcvat2 31673 bnj941 33814 bnj944 33980 kur14 34238 abs2sqle 34696 abs2sqlt 34697 onsucconn 35371 onsucsuccmp 35377 sdclem1 36659 mnurnd 43090 bnd2d 47774 |
Copyright terms: Public domain | W3C validator |