![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version |
Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2832 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 1, 2, 3 | elimhyp 4613 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: fprg 7189 orduninsuc 7880 oawordeu 8611 oeoa 8653 omopth 8718 unfilem3 9373 inar1 10844 supsr 11181 renegcl 11599 peano5uzti 12733 eluzaddOLD 12938 eluzsubOLD 12939 ltweuz 14012 uzenom 14015 seqfn 14064 seq1 14065 seqp1 14067 sqeqor 14265 binom2 14266 nn0opth2 14321 faclbnd4lem2 14343 hashxp 14483 dvdsle 16358 divalglem7 16447 divalg 16451 gcdaddm 16571 smadiadetr 22702 iblcnlem 25844 ax5seglem8 28969 elimnv 30715 elimnvu 30716 nmlno0i 30826 nmblolbi 30832 blocn 30839 elimphu 30853 ubth 30905 htth 30950 ifhvhv0 31054 normlem6 31147 norm-iii 31172 norm3lemt 31184 ifchhv 31276 hhssablo 31295 hhssnvt 31297 shscl 31350 shslej 31412 shincl 31413 omlsii 31435 pjoml 31468 pjoc2 31471 chm0 31523 chne0 31526 chocin 31527 chj0 31529 chlejb1 31544 chnle 31546 ledi 31572 h1datom 31614 cmbr3 31640 pjoml2 31643 cmcm 31646 cmcm3 31647 lecm 31649 pjmuli 31721 pjige0 31723 pjhfo 31738 pj11 31746 eigre 31867 eigorth 31870 hoddi 32022 nmlnop0 32030 lnopeq 32041 lnopunilem2 32043 nmbdoplb 32057 nmcopex 32061 nmcoplb 32062 lnopcon 32067 lnfn0 32079 lnfnmul 32080 nmcfnex 32085 nmcfnlb 32086 lnfncon 32088 riesz4 32096 riesz1 32097 cnlnadjeu 32110 pjhmop 32182 pjidmco 32213 mdslmd1lem3 32359 mdslmd1lem4 32360 csmdsymi 32366 hatomic 32392 atord 32420 atcvat2 32421 bnj941 34748 bnj944 34914 kur14 35184 abs2sqle 35648 abs2sqlt 35649 onsucconn 36404 onsucsuccmp 36410 sdclem1 37703 mnurnd 44252 bnd2d 48773 |
Copyright terms: Public domain | W3C validator |