| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version | ||
| Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 2 | eleq1 2816 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 1, 2, 3 | elimhyp 4554 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: fprg 7127 orduninsuc 7819 oawordeu 8519 oeoa 8561 omopth 8626 unfilem3 9256 inar1 10728 supsr 11065 renegcl 11485 peano5uzti 12624 eluzaddOLD 12828 eluzsubOLD 12829 ltweuz 13926 uzenom 13929 seqfn 13978 seq1 13979 seqp1 13981 sqeqor 14181 binom2 14182 nn0opth2 14237 faclbnd4lem2 14259 hashxp 14399 dvdsle 16280 divalglem7 16369 divalg 16373 gcdaddm 16495 smadiadetr 22562 iblcnlem 25690 ax5seglem8 28863 elimnv 30612 elimnvu 30613 nmlno0i 30723 nmblolbi 30729 blocn 30736 elimphu 30750 ubth 30802 htth 30847 ifhvhv0 30951 normlem6 31044 norm-iii 31069 norm3lemt 31081 ifchhv 31173 hhssablo 31192 hhssnvt 31194 shscl 31247 shslej 31309 shincl 31310 omlsii 31332 pjoml 31365 pjoc2 31368 chm0 31420 chne0 31423 chocin 31424 chj0 31426 chlejb1 31441 chnle 31443 ledi 31469 h1datom 31511 cmbr3 31537 pjoml2 31540 cmcm 31543 cmcm3 31544 lecm 31546 pjmuli 31618 pjige0 31620 pjhfo 31635 pj11 31643 eigre 31764 eigorth 31767 hoddi 31919 nmlnop0 31927 lnopeq 31938 lnopunilem2 31940 nmbdoplb 31954 nmcopex 31958 nmcoplb 31959 lnopcon 31964 lnfn0 31976 lnfnmul 31977 nmcfnex 31982 nmcfnlb 31983 lnfncon 31985 riesz4 31993 riesz1 31994 cnlnadjeu 32007 pjhmop 32079 pjidmco 32110 mdslmd1lem3 32256 mdslmd1lem4 32257 csmdsymi 32263 hatomic 32289 atord 32317 atcvat2 32318 bnj941 34762 bnj944 34928 kur14 35203 abs2sqle 35667 abs2sqlt 35668 onsucconn 36426 onsucsuccmp 36432 sdclem1 37737 mnurnd 44272 bnd2d 49670 |
| Copyright terms: Public domain | W3C validator |