| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version | ||
| Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 2 | eleq1 2816 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 1, 2, 3 | elimhyp 4544 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: fprg 7093 orduninsuc 7783 oawordeu 8480 oeoa 8522 omopth 8587 unfilem3 9214 inar1 10688 supsr 11025 renegcl 11445 peano5uzti 12584 eluzaddOLD 12788 eluzsubOLD 12789 ltweuz 13886 uzenom 13889 seqfn 13938 seq1 13939 seqp1 13941 sqeqor 14141 binom2 14142 nn0opth2 14197 faclbnd4lem2 14219 hashxp 14359 dvdsle 16239 divalglem7 16328 divalg 16332 gcdaddm 16454 smadiadetr 22578 iblcnlem 25706 ax5seglem8 28899 elimnv 30645 elimnvu 30646 nmlno0i 30756 nmblolbi 30762 blocn 30769 elimphu 30783 ubth 30835 htth 30880 ifhvhv0 30984 normlem6 31077 norm-iii 31102 norm3lemt 31114 ifchhv 31206 hhssablo 31225 hhssnvt 31227 shscl 31280 shslej 31342 shincl 31343 omlsii 31365 pjoml 31398 pjoc2 31401 chm0 31453 chne0 31456 chocin 31457 chj0 31459 chlejb1 31474 chnle 31476 ledi 31502 h1datom 31544 cmbr3 31570 pjoml2 31573 cmcm 31576 cmcm3 31577 lecm 31579 pjmuli 31651 pjige0 31653 pjhfo 31668 pj11 31676 eigre 31797 eigorth 31800 hoddi 31952 nmlnop0 31960 lnopeq 31971 lnopunilem2 31973 nmbdoplb 31987 nmcopex 31991 nmcoplb 31992 lnopcon 31997 lnfn0 32009 lnfnmul 32010 nmcfnex 32015 nmcfnlb 32016 lnfncon 32018 riesz4 32026 riesz1 32027 cnlnadjeu 32040 pjhmop 32112 pjidmco 32143 mdslmd1lem3 32289 mdslmd1lem4 32290 csmdsymi 32296 hatomic 32322 atord 32350 atcvat2 32351 bnj941 34741 bnj944 34907 kur14 35191 abs2sqle 35655 abs2sqlt 35656 onsucconn 36414 onsucsuccmp 36420 sdclem1 37725 mnurnd 44259 bnd2d 49670 |
| Copyright terms: Public domain | W3C validator |