| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version | ||
| Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 2 | eleq1 2823 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 1, 2, 3 | elimhyp 4571 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-if 4506 |
| This theorem is referenced by: fprg 7150 orduninsuc 7843 oawordeu 8572 oeoa 8614 omopth 8679 unfilem3 9322 inar1 10794 supsr 11131 renegcl 11551 peano5uzti 12688 eluzaddOLD 12892 eluzsubOLD 12893 ltweuz 13984 uzenom 13987 seqfn 14036 seq1 14037 seqp1 14039 sqeqor 14239 binom2 14240 nn0opth2 14295 faclbnd4lem2 14317 hashxp 14457 dvdsle 16334 divalglem7 16423 divalg 16427 gcdaddm 16549 smadiadetr 22618 iblcnlem 25747 ax5seglem8 28920 elimnv 30669 elimnvu 30670 nmlno0i 30780 nmblolbi 30786 blocn 30793 elimphu 30807 ubth 30859 htth 30904 ifhvhv0 31008 normlem6 31101 norm-iii 31126 norm3lemt 31138 ifchhv 31230 hhssablo 31249 hhssnvt 31251 shscl 31304 shslej 31366 shincl 31367 omlsii 31389 pjoml 31422 pjoc2 31425 chm0 31477 chne0 31480 chocin 31481 chj0 31483 chlejb1 31498 chnle 31500 ledi 31526 h1datom 31568 cmbr3 31594 pjoml2 31597 cmcm 31600 cmcm3 31601 lecm 31603 pjmuli 31675 pjige0 31677 pjhfo 31692 pj11 31700 eigre 31821 eigorth 31824 hoddi 31976 nmlnop0 31984 lnopeq 31995 lnopunilem2 31997 nmbdoplb 32011 nmcopex 32015 nmcoplb 32016 lnopcon 32021 lnfn0 32033 lnfnmul 32034 nmcfnex 32039 nmcfnlb 32040 lnfncon 32042 riesz4 32050 riesz1 32051 cnlnadjeu 32064 pjhmop 32136 pjidmco 32167 mdslmd1lem3 32313 mdslmd1lem4 32314 csmdsymi 32320 hatomic 32346 atord 32374 atcvat2 32375 bnj941 34808 bnj944 34974 kur14 35243 abs2sqle 35707 abs2sqlt 35708 onsucconn 36461 onsucsuccmp 36467 sdclem1 37772 mnurnd 44282 bnd2d 49525 |
| Copyright terms: Public domain | W3C validator |