| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version | ||
| Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 2 | eleq1 2819 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 1, 2, 3 | elimhyp 4541 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ifcif 4475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4476 |
| This theorem is referenced by: fprg 7088 orduninsuc 7773 oawordeu 8470 oeoa 8512 omopth 8577 unfilem3 9191 inar1 10666 supsr 11003 renegcl 11424 peano5uzti 12563 eluzaddOLD 12767 eluzsubOLD 12768 ltweuz 13868 uzenom 13871 seqfn 13920 seq1 13921 seqp1 13923 sqeqor 14123 binom2 14124 nn0opth2 14179 faclbnd4lem2 14201 hashxp 14341 dvdsle 16221 divalglem7 16310 divalg 16314 gcdaddm 16436 smadiadetr 22591 iblcnlem 25718 ax5seglem8 28915 elimnv 30661 elimnvu 30662 nmlno0i 30772 nmblolbi 30778 blocn 30785 elimphu 30799 ubth 30851 htth 30896 ifhvhv0 31000 normlem6 31093 norm-iii 31118 norm3lemt 31130 ifchhv 31222 hhssablo 31241 hhssnvt 31243 shscl 31296 shslej 31358 shincl 31359 omlsii 31381 pjoml 31414 pjoc2 31417 chm0 31469 chne0 31472 chocin 31473 chj0 31475 chlejb1 31490 chnle 31492 ledi 31518 h1datom 31560 cmbr3 31586 pjoml2 31589 cmcm 31592 cmcm3 31593 lecm 31595 pjmuli 31667 pjige0 31669 pjhfo 31684 pj11 31692 eigre 31813 eigorth 31816 hoddi 31968 nmlnop0 31976 lnopeq 31987 lnopunilem2 31989 nmbdoplb 32003 nmcopex 32007 nmcoplb 32008 lnopcon 32013 lnfn0 32025 lnfnmul 32026 nmcfnex 32031 nmcfnlb 32032 lnfncon 32034 riesz4 32042 riesz1 32043 cnlnadjeu 32056 pjhmop 32128 pjidmco 32159 mdslmd1lem3 32305 mdslmd1lem4 32306 csmdsymi 32312 hatomic 32338 atord 32366 atcvat2 32367 bnj941 34782 bnj944 34948 kur14 35258 abs2sqle 35722 abs2sqlt 35723 onsucconn 36478 onsucsuccmp 36484 sdclem1 37789 mnurnd 44322 bnd2d 49719 |
| Copyright terms: Public domain | W3C validator |