| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version | ||
| Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 2 | eleq1 2821 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 1, 2, 3 | elimhyp 4540 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ifcif 4474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4475 |
| This theorem is referenced by: fprg 7094 orduninsuc 7779 oawordeu 8476 oeoa 8518 omopth 8583 unfilem3 9198 inar1 10673 supsr 11010 renegcl 11431 peano5uzti 12569 ltweuz 13870 uzenom 13873 seqfn 13922 seq1 13923 seqp1 13925 sqeqor 14125 binom2 14126 nn0opth2 14181 faclbnd4lem2 14203 hashxp 14343 dvdsle 16223 divalglem7 16312 divalg 16316 gcdaddm 16438 smadiadetr 22591 iblcnlem 25718 ax5seglem8 28916 elimnv 30665 elimnvu 30666 nmlno0i 30776 nmblolbi 30782 blocn 30789 elimphu 30803 ubth 30855 htth 30900 ifhvhv0 31004 normlem6 31097 norm-iii 31122 norm3lemt 31134 ifchhv 31226 hhssablo 31245 hhssnvt 31247 shscl 31300 shslej 31362 shincl 31363 omlsii 31385 pjoml 31418 pjoc2 31421 chm0 31473 chne0 31476 chocin 31477 chj0 31479 chlejb1 31494 chnle 31496 ledi 31522 h1datom 31564 cmbr3 31590 pjoml2 31593 cmcm 31596 cmcm3 31597 lecm 31599 pjmuli 31671 pjige0 31673 pjhfo 31688 pj11 31696 eigre 31817 eigorth 31820 hoddi 31972 nmlnop0 31980 lnopeq 31991 lnopunilem2 31993 nmbdoplb 32007 nmcopex 32011 nmcoplb 32012 lnopcon 32017 lnfn0 32029 lnfnmul 32030 nmcfnex 32035 nmcfnlb 32036 lnfncon 32038 riesz4 32046 riesz1 32047 cnlnadjeu 32060 pjhmop 32132 pjidmco 32163 mdslmd1lem3 32309 mdslmd1lem4 32310 csmdsymi 32316 hatomic 32342 atord 32370 atcvat2 32371 bnj941 34805 bnj944 34971 kur14 35281 abs2sqle 35745 abs2sqlt 35746 onsucconn 36503 onsucsuccmp 36509 sdclem1 37804 mnurnd 44401 bnd2d 49807 |
| Copyright terms: Public domain | W3C validator |