Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version |
Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2826 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 1, 2, 3 | elimhyp 4521 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: fprg 7009 orduninsuc 7665 oawordeu 8348 oeoa 8390 omopth 8452 unfilem3 9010 inar1 10462 supsr 10799 renegcl 11214 peano5uzti 12340 eluzadd 12542 eluzsub 12543 ltweuz 13609 uzenom 13612 seqfn 13661 seq1 13662 seqp1 13664 sqeqor 13860 binom2 13861 nn0opth2 13914 faclbnd4lem2 13936 hashxp 14077 dvdsle 15947 divalglem7 16036 divalg 16040 gcdaddm 16160 smadiadetr 21732 iblcnlem 24858 ax5seglem8 27207 elimnv 28946 elimnvu 28947 nmlno0i 29057 nmblolbi 29063 blocn 29070 elimphu 29084 ubth 29136 htth 29181 ifhvhv0 29285 normlem6 29378 norm-iii 29403 norm3lemt 29415 ifchhv 29507 hhssablo 29526 hhssnvt 29528 shscl 29581 shslej 29643 shincl 29644 omlsii 29666 pjoml 29699 pjoc2 29702 chm0 29754 chne0 29757 chocin 29758 chj0 29760 chlejb1 29775 chnle 29777 ledi 29803 h1datom 29845 cmbr3 29871 pjoml2 29874 cmcm 29877 cmcm3 29878 lecm 29880 pjmuli 29952 pjige0 29954 pjhfo 29969 pj11 29977 eigre 30098 eigorth 30101 hoddi 30253 nmlnop0 30261 lnopeq 30272 lnopunilem2 30274 nmbdoplb 30288 nmcopex 30292 nmcoplb 30293 lnopcon 30298 lnfn0 30310 lnfnmul 30311 nmcfnex 30316 nmcfnlb 30317 lnfncon 30319 riesz4 30327 riesz1 30328 cnlnadjeu 30341 pjhmop 30413 pjidmco 30444 mdslmd1lem3 30590 mdslmd1lem4 30591 csmdsymi 30597 hatomic 30623 atord 30651 atcvat2 30652 bnj941 32652 bnj944 32818 kur14 33078 abs2sqle 33538 abs2sqlt 33539 onsucconn 34554 onsucsuccmp 34560 sdclem1 35828 mnurnd 41790 bnd2d 46273 |
Copyright terms: Public domain | W3C validator |