![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version |
Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2827 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 1, 2, 3 | elimhyp 4596 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: fprg 7175 orduninsuc 7864 oawordeu 8592 oeoa 8634 omopth 8699 unfilem3 9343 inar1 10813 supsr 11150 renegcl 11570 peano5uzti 12706 eluzaddOLD 12911 eluzsubOLD 12912 ltweuz 13999 uzenom 14002 seqfn 14051 seq1 14052 seqp1 14054 sqeqor 14252 binom2 14253 nn0opth2 14308 faclbnd4lem2 14330 hashxp 14470 dvdsle 16344 divalglem7 16433 divalg 16437 gcdaddm 16559 smadiadetr 22697 iblcnlem 25839 ax5seglem8 28966 elimnv 30712 elimnvu 30713 nmlno0i 30823 nmblolbi 30829 blocn 30836 elimphu 30850 ubth 30902 htth 30947 ifhvhv0 31051 normlem6 31144 norm-iii 31169 norm3lemt 31181 ifchhv 31273 hhssablo 31292 hhssnvt 31294 shscl 31347 shslej 31409 shincl 31410 omlsii 31432 pjoml 31465 pjoc2 31468 chm0 31520 chne0 31523 chocin 31524 chj0 31526 chlejb1 31541 chnle 31543 ledi 31569 h1datom 31611 cmbr3 31637 pjoml2 31640 cmcm 31643 cmcm3 31644 lecm 31646 pjmuli 31718 pjige0 31720 pjhfo 31735 pj11 31743 eigre 31864 eigorth 31867 hoddi 32019 nmlnop0 32027 lnopeq 32038 lnopunilem2 32040 nmbdoplb 32054 nmcopex 32058 nmcoplb 32059 lnopcon 32064 lnfn0 32076 lnfnmul 32077 nmcfnex 32082 nmcfnlb 32083 lnfncon 32085 riesz4 32093 riesz1 32094 cnlnadjeu 32107 pjhmop 32179 pjidmco 32210 mdslmd1lem3 32356 mdslmd1lem4 32357 csmdsymi 32363 hatomic 32389 atord 32417 atcvat2 32418 bnj941 34765 bnj944 34931 kur14 35201 abs2sqle 35665 abs2sqlt 35666 onsucconn 36421 onsucsuccmp 36427 sdclem1 37730 mnurnd 44279 bnd2d 48912 |
Copyright terms: Public domain | W3C validator |