![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version |
Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2821 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2821 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 1, 2, 3 | elimhyp 4593 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ifcif 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-if 4529 |
This theorem is referenced by: fprg 7152 orduninsuc 7831 oawordeu 8554 oeoa 8596 omopth 8660 unfilem3 9311 inar1 10769 supsr 11106 renegcl 11522 peano5uzti 12651 eluzaddOLD 12856 eluzsubOLD 12857 ltweuz 13925 uzenom 13928 seqfn 13977 seq1 13978 seqp1 13980 sqeqor 14179 binom2 14180 nn0opth2 14231 faclbnd4lem2 14253 hashxp 14393 dvdsle 16252 divalglem7 16341 divalg 16345 gcdaddm 16465 smadiadetr 22176 iblcnlem 25305 ax5seglem8 28191 elimnv 29931 elimnvu 29932 nmlno0i 30042 nmblolbi 30048 blocn 30055 elimphu 30069 ubth 30121 htth 30166 ifhvhv0 30270 normlem6 30363 norm-iii 30388 norm3lemt 30400 ifchhv 30492 hhssablo 30511 hhssnvt 30513 shscl 30566 shslej 30628 shincl 30629 omlsii 30651 pjoml 30684 pjoc2 30687 chm0 30739 chne0 30742 chocin 30743 chj0 30745 chlejb1 30760 chnle 30762 ledi 30788 h1datom 30830 cmbr3 30856 pjoml2 30859 cmcm 30862 cmcm3 30863 lecm 30865 pjmuli 30937 pjige0 30939 pjhfo 30954 pj11 30962 eigre 31083 eigorth 31086 hoddi 31238 nmlnop0 31246 lnopeq 31257 lnopunilem2 31259 nmbdoplb 31273 nmcopex 31277 nmcoplb 31278 lnopcon 31283 lnfn0 31295 lnfnmul 31296 nmcfnex 31301 nmcfnlb 31302 lnfncon 31304 riesz4 31312 riesz1 31313 cnlnadjeu 31326 pjhmop 31398 pjidmco 31429 mdslmd1lem3 31575 mdslmd1lem4 31576 csmdsymi 31582 hatomic 31608 atord 31636 atcvat2 31637 bnj941 33778 bnj944 33944 kur14 34202 abs2sqle 34660 abs2sqlt 34661 onsucconn 35318 onsucsuccmp 35324 sdclem1 36606 mnurnd 43032 bnd2d 47716 |
Copyright terms: Public domain | W3C validator |