| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version | ||
| Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2828 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 2 | eleq1 2828 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
| 3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 1, 2, 3 | elimhyp 4590 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ifcif 4524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-if 4525 |
| This theorem is referenced by: fprg 7174 orduninsuc 7865 oawordeu 8594 oeoa 8636 omopth 8701 unfilem3 9346 inar1 10816 supsr 11153 renegcl 11573 peano5uzti 12710 eluzaddOLD 12914 eluzsubOLD 12915 ltweuz 14003 uzenom 14006 seqfn 14055 seq1 14056 seqp1 14058 sqeqor 14256 binom2 14257 nn0opth2 14312 faclbnd4lem2 14334 hashxp 14474 dvdsle 16348 divalglem7 16437 divalg 16441 gcdaddm 16563 smadiadetr 22682 iblcnlem 25825 ax5seglem8 28952 elimnv 30703 elimnvu 30704 nmlno0i 30814 nmblolbi 30820 blocn 30827 elimphu 30841 ubth 30893 htth 30938 ifhvhv0 31042 normlem6 31135 norm-iii 31160 norm3lemt 31172 ifchhv 31264 hhssablo 31283 hhssnvt 31285 shscl 31338 shslej 31400 shincl 31401 omlsii 31423 pjoml 31456 pjoc2 31459 chm0 31511 chne0 31514 chocin 31515 chj0 31517 chlejb1 31532 chnle 31534 ledi 31560 h1datom 31602 cmbr3 31628 pjoml2 31631 cmcm 31634 cmcm3 31635 lecm 31637 pjmuli 31709 pjige0 31711 pjhfo 31726 pj11 31734 eigre 31855 eigorth 31858 hoddi 32010 nmlnop0 32018 lnopeq 32029 lnopunilem2 32031 nmbdoplb 32045 nmcopex 32049 nmcoplb 32050 lnopcon 32055 lnfn0 32067 lnfnmul 32068 nmcfnex 32073 nmcfnlb 32074 lnfncon 32076 riesz4 32084 riesz1 32085 cnlnadjeu 32098 pjhmop 32170 pjidmco 32201 mdslmd1lem3 32347 mdslmd1lem4 32348 csmdsymi 32354 hatomic 32380 atord 32408 atcvat2 32409 bnj941 34787 bnj944 34953 kur14 35222 abs2sqle 35686 abs2sqlt 35687 onsucconn 36440 onsucsuccmp 36446 sdclem1 37751 mnurnd 44307 bnd2d 49255 |
| Copyright terms: Public domain | W3C validator |