Proof of Theorem elimhyp3v
| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 4513 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐴, 𝐷) = 𝐴) |
| 2 | 1 | eqcomd 2740 |
. . . . 5
⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐷)) |
| 3 | | elimhyp3v.1 |
. . . . 5
⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜑 ↔ 𝜒)) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
| 5 | | iftrue 4513 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐵, 𝑅) = 𝐵) |
| 6 | 5 | eqcomd 2740 |
. . . . 5
⊢ (𝜑 → 𝐵 = if(𝜑, 𝐵, 𝑅)) |
| 7 | | elimhyp3v.2 |
. . . . 5
⊢ (𝐵 = if(𝜑, 𝐵, 𝑅) → (𝜒 ↔ 𝜃)) |
| 8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 9 | | iftrue 4513 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐶, 𝑆) = 𝐶) |
| 10 | 9 | eqcomd 2740 |
. . . . 5
⊢ (𝜑 → 𝐶 = if(𝜑, 𝐶, 𝑆)) |
| 11 | | elimhyp3v.3 |
. . . . 5
⊢ (𝐶 = if(𝜑, 𝐶, 𝑆) → (𝜃 ↔ 𝜏)) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| 13 | 4, 8, 12 | 3bitrd 305 |
. . 3
⊢ (𝜑 → (𝜑 ↔ 𝜏)) |
| 14 | 13 | ibi 267 |
. 2
⊢ (𝜑 → 𝜏) |
| 15 | | elimhyp3v.7 |
. . 3
⊢ 𝜂 |
| 16 | | iffalse 4516 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐴, 𝐷) = 𝐷) |
| 17 | 16 | eqcomd 2740 |
. . . . 5
⊢ (¬
𝜑 → 𝐷 = if(𝜑, 𝐴, 𝐷)) |
| 18 | | elimhyp3v.4 |
. . . . 5
⊢ (𝐷 = if(𝜑, 𝐴, 𝐷) → (𝜂 ↔ 𝜁)) |
| 19 | 17, 18 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜂 ↔ 𝜁)) |
| 20 | | iffalse 4516 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐵, 𝑅) = 𝑅) |
| 21 | 20 | eqcomd 2740 |
. . . . 5
⊢ (¬
𝜑 → 𝑅 = if(𝜑, 𝐵, 𝑅)) |
| 22 | | elimhyp3v.5 |
. . . . 5
⊢ (𝑅 = if(𝜑, 𝐵, 𝑅) → (𝜁 ↔ 𝜎)) |
| 23 | 21, 22 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜁 ↔ 𝜎)) |
| 24 | | iffalse 4516 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐶, 𝑆) = 𝑆) |
| 25 | 24 | eqcomd 2740 |
. . . . 5
⊢ (¬
𝜑 → 𝑆 = if(𝜑, 𝐶, 𝑆)) |
| 26 | | elimhyp3v.6 |
. . . . 5
⊢ (𝑆 = if(𝜑, 𝐶, 𝑆) → (𝜎 ↔ 𝜏)) |
| 27 | 25, 26 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜎 ↔ 𝜏)) |
| 28 | 19, 23, 27 | 3bitrd 305 |
. . 3
⊢ (¬
𝜑 → (𝜂 ↔ 𝜏)) |
| 29 | 15, 28 | mpbii 233 |
. 2
⊢ (¬
𝜑 → 𝜏) |
| 30 | 14, 29 | pm2.61i 182 |
1
⊢ 𝜏 |