Proof of Theorem elimhyp3v
Step | Hyp | Ref
| Expression |
1 | | iftrue 4462 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐴, 𝐷) = 𝐴) |
2 | 1 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐷)) |
3 | | elimhyp3v.1 |
. . . . 5
⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜑 ↔ 𝜒)) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
5 | | iftrue 4462 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐵, 𝑅) = 𝐵) |
6 | 5 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐵 = if(𝜑, 𝐵, 𝑅)) |
7 | | elimhyp3v.2 |
. . . . 5
⊢ (𝐵 = if(𝜑, 𝐵, 𝑅) → (𝜒 ↔ 𝜃)) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
9 | | iftrue 4462 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐶, 𝑆) = 𝐶) |
10 | 9 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐶 = if(𝜑, 𝐶, 𝑆)) |
11 | | elimhyp3v.3 |
. . . . 5
⊢ (𝐶 = if(𝜑, 𝐶, 𝑆) → (𝜃 ↔ 𝜏)) |
12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
13 | 4, 8, 12 | 3bitrd 304 |
. . 3
⊢ (𝜑 → (𝜑 ↔ 𝜏)) |
14 | 13 | ibi 266 |
. 2
⊢ (𝜑 → 𝜏) |
15 | | elimhyp3v.7 |
. . 3
⊢ 𝜂 |
16 | | iffalse 4465 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐴, 𝐷) = 𝐷) |
17 | 16 | eqcomd 2744 |
. . . . 5
⊢ (¬
𝜑 → 𝐷 = if(𝜑, 𝐴, 𝐷)) |
18 | | elimhyp3v.4 |
. . . . 5
⊢ (𝐷 = if(𝜑, 𝐴, 𝐷) → (𝜂 ↔ 𝜁)) |
19 | 17, 18 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜂 ↔ 𝜁)) |
20 | | iffalse 4465 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐵, 𝑅) = 𝑅) |
21 | 20 | eqcomd 2744 |
. . . . 5
⊢ (¬
𝜑 → 𝑅 = if(𝜑, 𝐵, 𝑅)) |
22 | | elimhyp3v.5 |
. . . . 5
⊢ (𝑅 = if(𝜑, 𝐵, 𝑅) → (𝜁 ↔ 𝜎)) |
23 | 21, 22 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜁 ↔ 𝜎)) |
24 | | iffalse 4465 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐶, 𝑆) = 𝑆) |
25 | 24 | eqcomd 2744 |
. . . . 5
⊢ (¬
𝜑 → 𝑆 = if(𝜑, 𝐶, 𝑆)) |
26 | | elimhyp3v.6 |
. . . . 5
⊢ (𝑆 = if(𝜑, 𝐶, 𝑆) → (𝜎 ↔ 𝜏)) |
27 | 25, 26 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜎 ↔ 𝜏)) |
28 | 19, 23, 27 | 3bitrd 304 |
. . 3
⊢ (¬
𝜑 → (𝜂 ↔ 𝜏)) |
29 | 15, 28 | mpbii 232 |
. 2
⊢ (¬
𝜑 → 𝜏) |
30 | 14, 29 | pm2.61i 182 |
1
⊢ 𝜏 |