Proof of Theorem elimhyp2v
| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 4513 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐴) |
| 2 | 1 | eqcomd 2740 |
. . . . 5
⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐶)) |
| 3 | | elimhyp2v.1 |
. . . . 5
⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜑 ↔ 𝜒)) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
| 5 | | iftrue 4513 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐵) |
| 6 | 5 | eqcomd 2740 |
. . . . 5
⊢ (𝜑 → 𝐵 = if(𝜑, 𝐵, 𝐷)) |
| 7 | | elimhyp2v.2 |
. . . . 5
⊢ (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒 ↔ 𝜃)) |
| 8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 9 | 4, 8 | bitrd 279 |
. . 3
⊢ (𝜑 → (𝜑 ↔ 𝜃)) |
| 10 | 9 | ibi 267 |
. 2
⊢ (𝜑 → 𝜃) |
| 11 | | elimhyp2v.5 |
. . 3
⊢ 𝜏 |
| 12 | | iffalse 4516 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐶) |
| 13 | 12 | eqcomd 2740 |
. . . . 5
⊢ (¬
𝜑 → 𝐶 = if(𝜑, 𝐴, 𝐶)) |
| 14 | | elimhyp2v.3 |
. . . . 5
⊢ (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏 ↔ 𝜂)) |
| 15 | 13, 14 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜏 ↔ 𝜂)) |
| 16 | | iffalse 4516 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐷) |
| 17 | 16 | eqcomd 2740 |
. . . . 5
⊢ (¬
𝜑 → 𝐷 = if(𝜑, 𝐵, 𝐷)) |
| 18 | | elimhyp2v.4 |
. . . . 5
⊢ (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂 ↔ 𝜃)) |
| 19 | 17, 18 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜂 ↔ 𝜃)) |
| 20 | 15, 19 | bitrd 279 |
. . 3
⊢ (¬
𝜑 → (𝜏 ↔ 𝜃)) |
| 21 | 11, 20 | mpbii 233 |
. 2
⊢ (¬
𝜑 → 𝜃) |
| 22 | 10, 21 | pm2.61i 182 |
1
⊢ 𝜃 |