Proof of Theorem elimhyp2v
Step | Hyp | Ref
| Expression |
1 | | iftrue 4465 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐴) |
2 | 1 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐶)) |
3 | | elimhyp2v.1 |
. . . . 5
⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜑 ↔ 𝜒)) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
5 | | iftrue 4465 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐵) |
6 | 5 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐵 = if(𝜑, 𝐵, 𝐷)) |
7 | | elimhyp2v.2 |
. . . . 5
⊢ (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒 ↔ 𝜃)) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
9 | 4, 8 | bitrd 278 |
. . 3
⊢ (𝜑 → (𝜑 ↔ 𝜃)) |
10 | 9 | ibi 266 |
. 2
⊢ (𝜑 → 𝜃) |
11 | | elimhyp2v.5 |
. . 3
⊢ 𝜏 |
12 | | iffalse 4468 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐶) |
13 | 12 | eqcomd 2744 |
. . . . 5
⊢ (¬
𝜑 → 𝐶 = if(𝜑, 𝐴, 𝐶)) |
14 | | elimhyp2v.3 |
. . . . 5
⊢ (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏 ↔ 𝜂)) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜏 ↔ 𝜂)) |
16 | | iffalse 4468 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐷) |
17 | 16 | eqcomd 2744 |
. . . . 5
⊢ (¬
𝜑 → 𝐷 = if(𝜑, 𝐵, 𝐷)) |
18 | | elimhyp2v.4 |
. . . . 5
⊢ (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂 ↔ 𝜃)) |
19 | 17, 18 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜂 ↔ 𝜃)) |
20 | 15, 19 | bitrd 278 |
. . 3
⊢ (¬
𝜑 → (𝜏 ↔ 𝜃)) |
21 | 11, 20 | mpbii 232 |
. 2
⊢ (¬
𝜑 → 𝜃) |
22 | 10, 21 | pm2.61i 182 |
1
⊢ 𝜃 |