Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv3d | Structured version Visualization version GIF version |
Description: A property 𝜒 holding for a representative of a single-valued class expression 𝐶(𝑦) (see e.g. reusv2 5321) also holds for its description binder 𝐷 (in the form of property 𝜃). (Contributed by NM, 5-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riotasv3d.1 | ⊢ Ⅎ𝑦𝜑 |
riotasv3d.2 | ⊢ (𝜑 → Ⅎ𝑦𝜃) |
riotasv3d.3 | ⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) |
riotasv3d.4 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝜒 ↔ 𝜃)) |
riotasv3d.5 | ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝜒)) |
riotasv3d.6 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
riotasv3d.7 | ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
riotasv3d | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | riotasv3d.7 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 𝜓) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → ∃𝑦 ∈ 𝐵 𝜓) |
4 | riotasv3d.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
5 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑦 𝐴 ∈ V | |
6 | riotasv3d.5 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝜒)) | |
7 | 6 | imp 406 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) → 𝜒) |
8 | 7 | adantrl 712 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → 𝜒) |
9 | riotasv3d.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) | |
10 | riotasv3d.6 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
11 | 9, 10 | riotasvd 36897 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝐷 = 𝐶)) |
12 | 11 | impr 454 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → 𝐷 = 𝐶) |
13 | 12 | eqcomd 2744 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → 𝐶 = 𝐷) |
14 | riotasv3d.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝜒 ↔ 𝜃)) | |
15 | 13, 14 | syldan 590 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → (𝜒 ↔ 𝜃)) |
16 | 8, 15 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → 𝜃) |
17 | 16 | exp45 438 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ V → (𝑦 ∈ 𝐵 → (𝜓 → 𝜃)))) |
18 | 4, 5, 17 | ralrimd 3141 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ V → ∀𝑦 ∈ 𝐵 (𝜓 → 𝜃))) |
19 | riotasv3d.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑦𝜃) | |
20 | r19.23t 3241 | . . . . . 6 ⊢ (Ⅎ𝑦𝜃 → (∀𝑦 ∈ 𝐵 (𝜓 → 𝜃) ↔ (∃𝑦 ∈ 𝐵 𝜓 → 𝜃))) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝜓 → 𝜃) ↔ (∃𝑦 ∈ 𝐵 𝜓 → 𝜃))) |
22 | 18, 21 | sylibd 238 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V → (∃𝑦 ∈ 𝐵 𝜓 → 𝜃))) |
23 | 22 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (∃𝑦 ∈ 𝐵 𝜓 → 𝜃)) |
24 | 3, 23 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → 𝜃) |
25 | 1, 24 | sylan2 592 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-undef 8060 |
This theorem is referenced by: cdlemefs32sn1aw 38355 cdleme43fsv1snlem 38361 cdleme41sn3a 38374 cdleme40m 38408 cdleme40n 38409 cdlemkid 38877 dihvalcqpre 39176 |
Copyright terms: Public domain | W3C validator |