Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv3d Structured version   Visualization version   GIF version

Theorem riotasv3d 36974
Description: A property 𝜒 holding for a representative of a single-valued class expression 𝐶(𝑦) (see e.g. reusv2 5326) also holds for its description binder 𝐷 (in the form of property 𝜃). (Contributed by NM, 5-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riotasv3d.1 𝑦𝜑
riotasv3d.2 (𝜑 → Ⅎ𝑦𝜃)
riotasv3d.3 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasv3d.4 ((𝜑𝐶 = 𝐷) → (𝜒𝜃))
riotasv3d.5 (𝜑 → ((𝑦𝐵𝜓) → 𝜒))
riotasv3d.6 (𝜑𝐷𝐴)
riotasv3d.7 (𝜑 → ∃𝑦𝐵 𝜓)
Assertion
Ref Expression
riotasv3d ((𝜑𝐴𝑉) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv3d
StepHypRef Expression
1 elex 3450 . 2 (𝐴𝑉𝐴 ∈ V)
2 riotasv3d.7 . . . 4 (𝜑 → ∃𝑦𝐵 𝜓)
32adantr 481 . . 3 ((𝜑𝐴 ∈ V) → ∃𝑦𝐵 𝜓)
4 riotasv3d.1 . . . . . 6 𝑦𝜑
5 nfv 1917 . . . . . 6 𝑦 𝐴 ∈ V
6 riotasv3d.5 . . . . . . . . . 10 (𝜑 → ((𝑦𝐵𝜓) → 𝜒))
76imp 407 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝜓)) → 𝜒)
87adantrl 713 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → 𝜒)
9 riotasv3d.3 . . . . . . . . . . . 12 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
10 riotasv3d.6 . . . . . . . . . . . 12 (𝜑𝐷𝐴)
119, 10riotasvd 36970 . . . . . . . . . . 11 ((𝜑𝐴 ∈ V) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
1211impr 455 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → 𝐷 = 𝐶)
1312eqcomd 2744 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → 𝐶 = 𝐷)
14 riotasv3d.4 . . . . . . . . 9 ((𝜑𝐶 = 𝐷) → (𝜒𝜃))
1513, 14syldan 591 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → (𝜒𝜃))
168, 15mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → 𝜃)
1716exp45 439 . . . . . 6 (𝜑 → (𝐴 ∈ V → (𝑦𝐵 → (𝜓𝜃))))
184, 5, 17ralrimd 3143 . . . . 5 (𝜑 → (𝐴 ∈ V → ∀𝑦𝐵 (𝜓𝜃)))
19 riotasv3d.2 . . . . . 6 (𝜑 → Ⅎ𝑦𝜃)
20 r19.23t 3246 . . . . . 6 (Ⅎ𝑦𝜃 → (∀𝑦𝐵 (𝜓𝜃) ↔ (∃𝑦𝐵 𝜓𝜃)))
2119, 20syl 17 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝜓𝜃) ↔ (∃𝑦𝐵 𝜓𝜃)))
2218, 21sylibd 238 . . . 4 (𝜑 → (𝐴 ∈ V → (∃𝑦𝐵 𝜓𝜃)))
2322imp 407 . . 3 ((𝜑𝐴 ∈ V) → (∃𝑦𝐵 𝜓𝜃))
243, 23mpd 15 . 2 ((𝜑𝐴 ∈ V) → 𝜃)
251, 24sylan2 593 1 ((𝜑𝐴𝑉) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  crio 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-undef 8089
This theorem is referenced by:  cdlemefs32sn1aw  38428  cdleme43fsv1snlem  38434  cdleme41sn3a  38447  cdleme40m  38481  cdleme40n  38482  cdlemkid  38950  dihvalcqpre  39249
  Copyright terms: Public domain W3C validator