Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv3d Structured version   Visualization version   GIF version

Theorem riotasv3d 38916
Description: A property 𝜒 holding for a representative of a single-valued class expression 𝐶(𝑦) (see e.g. reusv2 5421) also holds for its description binder 𝐷 (in the form of property 𝜃). (Contributed by NM, 5-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riotasv3d.1 𝑦𝜑
riotasv3d.2 (𝜑 → Ⅎ𝑦𝜃)
riotasv3d.3 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasv3d.4 ((𝜑𝐶 = 𝐷) → (𝜒𝜃))
riotasv3d.5 (𝜑 → ((𝑦𝐵𝜓) → 𝜒))
riotasv3d.6 (𝜑𝐷𝐴)
riotasv3d.7 (𝜑 → ∃𝑦𝐵 𝜓)
Assertion
Ref Expression
riotasv3d ((𝜑𝐴𝑉) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv3d
StepHypRef Expression
1 elex 3509 . 2 (𝐴𝑉𝐴 ∈ V)
2 riotasv3d.7 . . . 4 (𝜑 → ∃𝑦𝐵 𝜓)
32adantr 480 . . 3 ((𝜑𝐴 ∈ V) → ∃𝑦𝐵 𝜓)
4 riotasv3d.1 . . . . . 6 𝑦𝜑
5 nfv 1913 . . . . . 6 𝑦 𝐴 ∈ V
6 riotasv3d.5 . . . . . . . . . 10 (𝜑 → ((𝑦𝐵𝜓) → 𝜒))
76imp 406 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝜓)) → 𝜒)
87adantrl 715 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → 𝜒)
9 riotasv3d.3 . . . . . . . . . . . 12 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
10 riotasv3d.6 . . . . . . . . . . . 12 (𝜑𝐷𝐴)
119, 10riotasvd 38912 . . . . . . . . . . 11 ((𝜑𝐴 ∈ V) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
1211impr 454 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → 𝐷 = 𝐶)
1312eqcomd 2746 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → 𝐶 = 𝐷)
14 riotasv3d.4 . . . . . . . . 9 ((𝜑𝐶 = 𝐷) → (𝜒𝜃))
1513, 14syldan 590 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → (𝜒𝜃))
168, 15mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦𝐵𝜓))) → 𝜃)
1716exp45 438 . . . . . 6 (𝜑 → (𝐴 ∈ V → (𝑦𝐵 → (𝜓𝜃))))
184, 5, 17ralrimd 3270 . . . . 5 (𝜑 → (𝐴 ∈ V → ∀𝑦𝐵 (𝜓𝜃)))
19 riotasv3d.2 . . . . . 6 (𝜑 → Ⅎ𝑦𝜃)
20 r19.23t 3261 . . . . . 6 (Ⅎ𝑦𝜃 → (∀𝑦𝐵 (𝜓𝜃) ↔ (∃𝑦𝐵 𝜓𝜃)))
2119, 20syl 17 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝜓𝜃) ↔ (∃𝑦𝐵 𝜓𝜃)))
2218, 21sylibd 239 . . . 4 (𝜑 → (𝐴 ∈ V → (∃𝑦𝐵 𝜓𝜃)))
2322imp 406 . . 3 ((𝜑𝐴 ∈ V) → (∃𝑦𝐵 𝜓𝜃))
243, 23mpd 15 . 2 ((𝜑𝐴 ∈ V) → 𝜃)
251, 24sylan2 592 1 ((𝜑𝐴𝑉) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-undef 8314
This theorem is referenced by:  cdlemefs32sn1aw  40371  cdleme43fsv1snlem  40377  cdleme41sn3a  40390  cdleme40m  40424  cdleme40n  40425  cdlemkid  40893  dihvalcqpre  41192
  Copyright terms: Public domain W3C validator