| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv3d | Structured version Visualization version GIF version | ||
| Description: A property 𝜒 holding for a representative of a single-valued class expression 𝐶(𝑦) (see e.g. reusv2 5341) also holds for its description binder 𝐷 (in the form of property 𝜃). (Contributed by NM, 5-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riotasv3d.1 | ⊢ Ⅎ𝑦𝜑 |
| riotasv3d.2 | ⊢ (𝜑 → Ⅎ𝑦𝜃) |
| riotasv3d.3 | ⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) |
| riotasv3d.4 | ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝜒 ↔ 𝜃)) |
| riotasv3d.5 | ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝜒)) |
| riotasv3d.6 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| riotasv3d.7 | ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| riotasv3d | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | riotasv3d.7 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → ∃𝑦 ∈ 𝐵 𝜓) |
| 4 | riotasv3d.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 5 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑦 𝐴 ∈ V | |
| 6 | riotasv3d.5 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝜒)) | |
| 7 | 6 | imp 406 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) → 𝜒) |
| 8 | 7 | adantrl 716 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → 𝜒) |
| 9 | riotasv3d.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) | |
| 10 | riotasv3d.6 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 11 | 9, 10 | riotasvd 39001 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝐷 = 𝐶)) |
| 12 | 11 | impr 454 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → 𝐷 = 𝐶) |
| 13 | 12 | eqcomd 2737 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → 𝐶 = 𝐷) |
| 14 | riotasv3d.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝜒 ↔ 𝜃)) | |
| 15 | 13, 14 | syldan 591 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → (𝜒 ↔ 𝜃)) |
| 16 | 8, 15 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ V ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) → 𝜃) |
| 17 | 16 | exp45 438 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ V → (𝑦 ∈ 𝐵 → (𝜓 → 𝜃)))) |
| 18 | 4, 5, 17 | ralrimd 3237 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ V → ∀𝑦 ∈ 𝐵 (𝜓 → 𝜃))) |
| 19 | riotasv3d.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑦𝜃) | |
| 20 | r19.23t 3228 | . . . . . 6 ⊢ (Ⅎ𝑦𝜃 → (∀𝑦 ∈ 𝐵 (𝜓 → 𝜃) ↔ (∃𝑦 ∈ 𝐵 𝜓 → 𝜃))) | |
| 21 | 19, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝜓 → 𝜃) ↔ (∃𝑦 ∈ 𝐵 𝜓 → 𝜃))) |
| 22 | 18, 21 | sylibd 239 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V → (∃𝑦 ∈ 𝐵 𝜓 → 𝜃))) |
| 23 | 22 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (∃𝑦 ∈ 𝐵 𝜓 → 𝜃)) |
| 24 | 3, 23 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → 𝜃) |
| 25 | 1, 24 | sylan2 593 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-riotaBAD 38998 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-undef 8203 |
| This theorem is referenced by: cdlemefs32sn1aw 40459 cdleme43fsv1snlem 40465 cdleme41sn3a 40478 cdleme40m 40512 cdleme40n 40513 cdlemkid 40981 dihvalcqpre 41280 |
| Copyright terms: Public domain | W3C validator |