Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhpind Structured version   Visualization version   GIF version

Theorem mhpind 42604
Description: The homogeneous polynomials of degree 𝑁 are generated by the terms of degree 𝑁 and addition. (Contributed by SN, 28-Jul-2024.)
Hypotheses
Ref Expression
mhpind.h 𝐻 = (𝐼 mHomP 𝑅)
mhpind.b 𝐵 = (Base‘𝑅)
mhpind.z 0 = (0g𝑅)
mhpind.p 𝑃 = (𝐼 mPoly 𝑅)
mhpind.a + = (+g𝑃)
mhpind.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpind.s 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhpind.r (𝜑𝑅 ∈ Grp)
mhpind.x (𝜑𝑋 ∈ (𝐻𝑁))
mhpind.0 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
mhpind.1 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
mhpind.2 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
Assertion
Ref Expression
mhpind (𝜑𝑋𝐺)
Distinct variable groups:   0 ,𝑎,𝑏,𝑠   𝑥, 0 ,𝑦,𝑠   𝐵,𝑎,𝑏,𝑠   𝐷,𝑎,𝑏,𝑔,𝑠   𝑥,𝐷,𝑦,𝑔   𝐺,𝑎,𝑏,𝑠   𝑥,𝐺,𝑦   𝐻,𝑎,𝑏,𝑠   𝑥,𝐻,𝑦   ,𝐼   𝑁,𝑎,𝑏,𝑔,𝑠   𝑥,𝑁,𝑦   𝑃,𝑎,𝑏,𝑠   𝑥,𝑃,𝑦   𝑅,𝑠,𝑥,𝑦   𝑆,𝑠   𝜑,𝑎,𝑏,𝑠   𝜑,𝑥,𝑦   𝑔,
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑥,𝑦,𝑔,)   𝐷()   𝑃(𝑔,)   + (𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑥,𝑦,𝑔,,𝑎,𝑏)   𝐺(𝑔,)   𝐻(𝑔,)   𝐼(𝑥,𝑦,𝑔,𝑠,𝑎,𝑏)   𝑁()   𝑋(𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   0 (𝑔,)

Proof of Theorem mhpind
StepHypRef Expression
1 mhpind.b . . 3 𝐵 = (Base‘𝑅)
2 mhpind.z . . 3 0 = (0g𝑅)
3 eqid 2737 . . 3 (+g𝑅) = (+g𝑅)
4 mhpind.r . . 3 (𝜑𝑅 ∈ Grp)
5 mhpind.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 ovexd 7466 . . . 4 (𝜑 → (ℕ0m 𝐼) ∈ V)
75, 6rabexd 5340 . . 3 (𝜑𝐷 ∈ V)
8 ssrab2 4080 . . . 4 {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷
98a1i 11 . . 3 (𝜑 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷)
10 mhpind.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
11 reldmmhp 22141 . . . . . 6 Rel dom mHomP
12 mhpind.x . . . . . 6 (𝜑𝑋 ∈ (𝐻𝑁))
1311, 10, 12elfvov1 7473 . . . . 5 (𝜑𝐼 ∈ V)
1410, 12mhprcl 22147 . . . . 5 (𝜑𝑁 ∈ ℕ0)
1510, 2, 5, 13, 4, 14mhp0cl 22150 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
16 mhpind.0 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
1715, 16elind 4200 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ ((𝐻𝑁) ∩ 𝐺))
18 mhpind.s . . . . . 6 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1918eleq2i 2833 . . . . 5 (𝑎𝑆𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
2019biimpri 228 . . . 4 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝑆)
21 mhpind.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
22 eqid 2737 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
2314adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑁 ∈ ℕ0)
24 simplrr 778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 𝑏𝐵)
251, 2grpidcl 18983 . . . . . . . . . . . . 13 (𝑅 ∈ Grp → 0𝐵)
264, 25syl 17 . . . . . . . . . . . 12 (𝜑0𝐵)
2726ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 0𝐵)
2824, 27ifcld 4572 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵)
2928fmpttd 7135 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵)
301fvexi 6920 . . . . . . . . . . . 12 𝐵 ∈ V
3130a1i 11 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
3231, 7elmapd 8880 . . . . . . . . . 10 (𝜑 → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3332adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3429, 33mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷))
35 eqid 2737 . . . . . . . . . 10 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
36 eqid 2737 . . . . . . . . . 10 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3735, 1, 5, 36, 13psrbas 21953 . . . . . . . . 9 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3837adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3934, 38eleqtrrd 2844 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
402fvexi 6920 . . . . . . . . . 10 0 ∈ V
4140a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
42 eqid 2737 . . . . . . . . 9 (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))
437, 41, 42sniffsupp 9440 . . . . . . . 8 (𝜑 → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4443adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4521, 35, 36, 2, 22mplelbas 22011 . . . . . . 7 ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃) ↔ ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 ))
4639, 44, 45sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃))
47 elneeldif 3965 . . . . . . . . . . . . 13 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑎𝑠)
4847necomd 2996 . . . . . . . . . . . 12 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
4948adantll 714 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5049adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5150neneqd 2945 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → ¬ 𝑠 = 𝑎)
5251iffalsed 4536 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 )
537adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐷 ∈ V)
5452, 53suppss2 8225 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ 𝑆)
5554, 18sseqtrdi 4024 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
5610, 21, 22, 2, 5, 23, 46, 55ismhp2 22145 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐻𝑁))
57 mhpind.1 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
5856, 57elind 4200 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
5920, 58sylanr1 682 . . 3 ((𝜑 ∧ (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
60 mhpind.a . . . . 5 + = (+g𝑃)
61 elinel1 4201 . . . . . . 7 (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑥 ∈ (𝐻𝑁))
6261ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (𝐻𝑁))
6310, 21, 22, 62mhpmpl 22148 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (Base‘𝑃))
64 elinel1 4201 . . . . . . 7 (𝑦 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑦 ∈ (𝐻𝑁))
6564ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (𝐻𝑁))
6610, 21, 22, 65mhpmpl 22148 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (Base‘𝑃))
6721, 22, 3, 60, 63, 66mpladd 22029 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) = (𝑥f (+g𝑅)𝑦))
684adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑅 ∈ Grp)
6910, 21, 60, 68, 62, 65mhpaddcl 22155 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ (𝐻𝑁))
70 mhpind.2 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
7169, 70elind 4200 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
7267, 71eqeltrrd 2842 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥f (+g𝑅)𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
7310, 21, 22, 12mhpmpl 22148 . . . 4 (𝜑𝑋 ∈ (Base‘𝑃))
7421, 1, 22, 5, 73mplelf 22018 . . 3 (𝜑𝑋:𝐷𝐵)
7521, 22, 2, 73mplelsfi 22015 . . 3 (𝜑𝑋 finSupp 0 )
7610, 2, 5, 12mhpdeg 22149 . . 3 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
771, 2, 3, 4, 7, 9, 17, 59, 72, 74, 75, 76fsuppssind 42603 . 2 (𝜑𝑋 ∈ ((𝐻𝑁) ∩ 𝐺))
7877elin2d 4205 1 (𝜑𝑋𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  cdif 3948  cin 3950  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695   supp csupp 8185  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  cn 12266  0cn0 12526  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484   Σg cgsu 17485  Grpcgrp 18951  fldccnfld 21364   mPwSer cmps 21924   mPoly cmpl 21926   mHomP cmhp 22133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-psr 21929  df-mpl 21931  df-mhp 22140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator