Proof of Theorem mhpind
Step | Hyp | Ref
| Expression |
1 | | mhpind.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
2 | | mhpind.z |
. . 3
⊢ 0 =
(0g‘𝑅) |
3 | | eqid 2738 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
4 | | mhpind.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Grp) |
5 | | mhpind.d |
. . . 4
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
6 | | ovexd 7310 |
. . . 4
⊢ (𝜑 → (ℕ0
↑m 𝐼)
∈ V) |
7 | 5, 6 | rabexd 5257 |
. . 3
⊢ (𝜑 → 𝐷 ∈ V) |
8 | | ssrab2 4013 |
. . . 4
⊢ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} ⊆ 𝐷 |
9 | 8 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} ⊆ 𝐷) |
10 | | mhpind.h |
. . . . 5
⊢ 𝐻 = (𝐼 mHomP 𝑅) |
11 | | mhpind.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
12 | | mhpind.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
13 | 10, 2, 5, 11, 4, 12 | mhp0cl 21336 |
. . . 4
⊢ (𝜑 → (𝐷 × { 0 }) ∈ (𝐻‘𝑁)) |
14 | | mhpind.0 |
. . . 4
⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐺) |
15 | 13, 14 | elind 4128 |
. . 3
⊢ (𝜑 → (𝐷 × { 0 }) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
16 | | mhpind.s |
. . . . . 6
⊢ 𝑆 = {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} |
17 | 16 | eleq2i 2830 |
. . . . 5
⊢ (𝑎 ∈ 𝑆 ↔ 𝑎 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁}) |
18 | 17 | biimpri 227 |
. . . 4
⊢ (𝑎 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} → 𝑎 ∈ 𝑆) |
19 | | mhpind.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
20 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
21 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ 𝑉) |
22 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ Grp) |
23 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝑁 ∈
ℕ0) |
24 | | simplrr 775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝐷) → 𝑏 ∈ 𝐵) |
25 | 1, 2 | grpidcl 18607 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
26 | 4, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈ 𝐵) |
27 | 26 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝐷) → 0 ∈ 𝐵) |
28 | 24, 27 | ifcld 4505 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝐷) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵) |
29 | 28 | fmpttd 6989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷⟶𝐵) |
30 | 1 | fvexi 6788 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ V |
31 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) |
32 | 31, 7 | elmapd 8629 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵 ↑m 𝐷) ↔ (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷⟶𝐵)) |
33 | 32 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵 ↑m 𝐷) ↔ (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷⟶𝐵)) |
34 | 29, 33 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵 ↑m 𝐷)) |
35 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
36 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
37 | 35, 1, 5, 36, 11 | psrbas 21147 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵 ↑m 𝐷)) |
38 | 37 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵 ↑m 𝐷)) |
39 | 34, 38 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈
(Base‘(𝐼 mPwSer 𝑅))) |
40 | 2 | fvexi 6788 |
. . . . . . . . . 10
⊢ 0 ∈
V |
41 | 40 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ V) |
42 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) |
43 | 7, 41, 42 | sniffsupp 9159 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0
) |
44 | 43 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0
) |
45 | 19, 35, 36, 2, 20 | mplelbas 21199 |
. . . . . . 7
⊢ ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈
(Base‘𝑃) ↔
((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈
(Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0
)) |
46 | 39, 44, 45 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈
(Base‘𝑃)) |
47 | | elneeldif 3901 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝑆 ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → 𝑎 ≠ 𝑠) |
48 | 47 | necomd 2999 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝑆 ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → 𝑠 ≠ 𝑎) |
49 | 48 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → 𝑠 ≠ 𝑎) |
50 | 49 | adantlrr 718 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → 𝑠 ≠ 𝑎) |
51 | 50 | neneqd 2948 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → ¬ 𝑠 = 𝑎) |
52 | 51 | iffalsed 4470 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 ) |
53 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝐷 ∈ V) |
54 | 52, 53 | suppss2 8016 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ 𝑆) |
55 | 54, 16 | sseqtrdi 3971 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁}) |
56 | 10, 19, 20, 2, 5, 21, 22, 23, 46, 55 | ismhp2 21332 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐻‘𝑁)) |
57 | | mhpind.1 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺) |
58 | 56, 57 | elind 4128 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
59 | 18, 58 | sylanr1 679 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
60 | | mhpind.a |
. . . . 5
⊢ + =
(+g‘𝑃) |
61 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝐼 ∈ 𝑉) |
62 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑅 ∈ Grp) |
63 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑁 ∈
ℕ0) |
64 | | elinel1 4129 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) → 𝑥 ∈ (𝐻‘𝑁)) |
65 | 64 | ad2antrl 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑥 ∈ (𝐻‘𝑁)) |
66 | 10, 19, 20, 61, 62, 63, 65 | mhpmpl 21334 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑥 ∈ (Base‘𝑃)) |
67 | | elinel1 4129 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺) → 𝑦 ∈ (𝐻‘𝑁)) |
68 | 67 | ad2antll 726 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑦 ∈ (𝐻‘𝑁)) |
69 | 10, 19, 20, 61, 62, 63, 68 | mhpmpl 21334 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑦 ∈ (Base‘𝑃)) |
70 | 19, 20, 3, 60, 66, 69 | mpladd 21213 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) |
71 | 10, 19, 60, 61, 62, 63, 65, 68 | mhpaddcl 21341 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ (𝐻‘𝑁)) |
72 | | mhpind.2 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺) |
73 | 71, 72 | elind 4128 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
74 | 70, 73 | eqeltrrd 2840 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 ∘f
(+g‘𝑅)𝑦) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
75 | | mhpind.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
76 | 10, 19, 20, 11, 4, 12, 75 | mhpmpl 21334 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
77 | 19, 1, 20, 5, 76 | mplelf 21204 |
. . 3
⊢ (𝜑 → 𝑋:𝐷⟶𝐵) |
78 | 19, 20, 2, 76, 4 | mplelsfi 21201 |
. . 3
⊢ (𝜑 → 𝑋 finSupp 0 ) |
79 | 10, 2, 5, 11, 4, 12, 75 | mhpdeg 21335 |
. . 3
⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁}) |
80 | 1, 2, 3, 4, 7, 9, 15, 59, 74, 77, 78, 79 | fsuppssind 40282 |
. 2
⊢ (𝜑 → 𝑋 ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
81 | 80 | elin2d 4133 |
1
⊢ (𝜑 → 𝑋 ∈ 𝐺) |