Proof of Theorem mhpind
Step | Hyp | Ref
| Expression |
1 | | mhpind.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
2 | | mhpind.z |
. . 3
⊢ 0 =
(0g‘𝑅) |
3 | | eqid 2740 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
4 | | mhpind.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Grp) |
5 | | mhpind.d |
. . . 4
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
6 | | ovexd 7483 |
. . . 4
⊢ (𝜑 → (ℕ0
↑m 𝐼)
∈ V) |
7 | 5, 6 | rabexd 5358 |
. . 3
⊢ (𝜑 → 𝐷 ∈ V) |
8 | | ssrab2 4103 |
. . . 4
⊢ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} ⊆ 𝐷 |
9 | 8 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} ⊆ 𝐷) |
10 | | mhpind.h |
. . . . 5
⊢ 𝐻 = (𝐼 mHomP 𝑅) |
11 | | reldmmhp 22164 |
. . . . . 6
⊢ Rel dom
mHomP |
12 | | mhpind.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
13 | 11, 10, 12 | elfvov1 7490 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ V) |
14 | 10, 12 | mhprcl 22170 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
15 | 10, 2, 5, 13, 4, 14 | mhp0cl 22173 |
. . . 4
⊢ (𝜑 → (𝐷 × { 0 }) ∈ (𝐻‘𝑁)) |
16 | | mhpind.0 |
. . . 4
⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐺) |
17 | 15, 16 | elind 4223 |
. . 3
⊢ (𝜑 → (𝐷 × { 0 }) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
18 | | mhpind.s |
. . . . . 6
⊢ 𝑆 = {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} |
19 | 18 | eleq2i 2836 |
. . . . 5
⊢ (𝑎 ∈ 𝑆 ↔ 𝑎 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁}) |
20 | 19 | biimpri 228 |
. . . 4
⊢ (𝑎 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} → 𝑎 ∈ 𝑆) |
21 | | mhpind.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
22 | | eqid 2740 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
23 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ V) |
24 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ Grp) |
25 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝑁 ∈
ℕ0) |
26 | | simplrr 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝐷) → 𝑏 ∈ 𝐵) |
27 | 1, 2 | grpidcl 19005 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
28 | 4, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈ 𝐵) |
29 | 28 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝐷) → 0 ∈ 𝐵) |
30 | 26, 29 | ifcld 4594 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝐷) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵) |
31 | 30 | fmpttd 7149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷⟶𝐵) |
32 | 1 | fvexi 6934 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ V |
33 | 32 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) |
34 | 33, 7 | elmapd 8898 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵 ↑m 𝐷) ↔ (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷⟶𝐵)) |
35 | 34 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵 ↑m 𝐷) ↔ (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷⟶𝐵)) |
36 | 31, 35 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵 ↑m 𝐷)) |
37 | | eqid 2740 |
. . . . . . . . . 10
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
38 | | eqid 2740 |
. . . . . . . . . 10
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
39 | 37, 1, 5, 38, 13 | psrbas 21976 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵 ↑m 𝐷)) |
40 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵 ↑m 𝐷)) |
41 | 36, 40 | eleqtrrd 2847 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈
(Base‘(𝐼 mPwSer 𝑅))) |
42 | 2 | fvexi 6934 |
. . . . . . . . . 10
⊢ 0 ∈
V |
43 | 42 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ V) |
44 | | eqid 2740 |
. . . . . . . . 9
⊢ (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) |
45 | 7, 43, 44 | sniffsupp 9469 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0
) |
46 | 45 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0
) |
47 | 21, 37, 38, 2, 22 | mplelbas 22034 |
. . . . . . 7
⊢ ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈
(Base‘𝑃) ↔
((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈
(Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0
)) |
48 | 41, 46, 47 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈
(Base‘𝑃)) |
49 | | elneeldif 3990 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝑆 ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → 𝑎 ≠ 𝑠) |
50 | 49 | necomd 3002 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝑆 ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → 𝑠 ≠ 𝑎) |
51 | 50 | adantll 713 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → 𝑠 ≠ 𝑎) |
52 | 51 | adantlrr 720 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → 𝑠 ≠ 𝑎) |
53 | 52 | neneqd 2951 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → ¬ 𝑠 = 𝑎) |
54 | 53 | iffalsed 4559 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐷 ∖ 𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 ) |
55 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝐷 ∈ V) |
56 | 54, 55 | suppss2 8241 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ 𝑆) |
57 | 56, 18 | sseqtrdi 4059 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁}) |
58 | 10, 21, 22, 2, 5, 23, 24, 25, 48, 57 | ismhp2 22168 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐻‘𝑁)) |
59 | | mhpind.1 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺) |
60 | 58, 59 | elind 4223 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
61 | 20, 60 | sylanr1 681 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
62 | | mhpind.a |
. . . . 5
⊢ + =
(+g‘𝑃) |
63 | | elinel1 4224 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) → 𝑥 ∈ (𝐻‘𝑁)) |
64 | 63 | ad2antrl 727 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑥 ∈ (𝐻‘𝑁)) |
65 | 10, 21, 22, 64 | mhpmpl 22171 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑥 ∈ (Base‘𝑃)) |
66 | | elinel1 4224 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺) → 𝑦 ∈ (𝐻‘𝑁)) |
67 | 66 | ad2antll 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑦 ∈ (𝐻‘𝑁)) |
68 | 10, 21, 22, 67 | mhpmpl 22171 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑦 ∈ (Base‘𝑃)) |
69 | 21, 22, 3, 62, 65, 68 | mpladd 22052 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) |
70 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → 𝑅 ∈ Grp) |
71 | 10, 21, 62, 70, 64, 67 | mhpaddcl 22178 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ (𝐻‘𝑁)) |
72 | | mhpind.2 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺) |
73 | 71, 72 | elind 4223 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
74 | 69, 73 | eqeltrrd 2845 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ((𝐻‘𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻‘𝑁) ∩ 𝐺))) → (𝑥 ∘f
(+g‘𝑅)𝑦) ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
75 | 10, 21, 22, 12 | mhpmpl 22171 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
76 | 21, 1, 22, 5, 75 | mplelf 22041 |
. . 3
⊢ (𝜑 → 𝑋:𝐷⟶𝐵) |
77 | 21, 22, 2, 75, 4 | mplelsfi 22038 |
. . 3
⊢ (𝜑 → 𝑋 finSupp 0 ) |
78 | 10, 2, 5, 12 | mhpdeg 22172 |
. . 3
⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁}) |
79 | 1, 2, 3, 4, 7, 9, 17, 61, 74, 76, 77, 78 | fsuppssind 42548 |
. 2
⊢ (𝜑 → 𝑋 ∈ ((𝐻‘𝑁) ∩ 𝐺)) |
80 | 79 | elin2d 4228 |
1
⊢ (𝜑 → 𝑋 ∈ 𝐺) |