Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhpind Structured version   Visualization version   GIF version

Theorem mhpind 41468
Description: The homogeneous polynomials of degree 𝑁 are generated by the terms of degree 𝑁 and addition. (Contributed by SN, 28-Jul-2024.)
Hypotheses
Ref Expression
mhpind.h 𝐻 = (𝐼 mHomP 𝑅)
mhpind.b 𝐵 = (Base‘𝑅)
mhpind.z 0 = (0g𝑅)
mhpind.p 𝑃 = (𝐼 mPoly 𝑅)
mhpind.a + = (+g𝑃)
mhpind.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpind.s 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhpind.i (𝜑𝐼𝑉)
mhpind.r (𝜑𝑅 ∈ Grp)
mhpind.n (𝜑𝑁 ∈ ℕ0)
mhpind.x (𝜑𝑋 ∈ (𝐻𝑁))
mhpind.0 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
mhpind.1 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
mhpind.2 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
Assertion
Ref Expression
mhpind (𝜑𝑋𝐺)
Distinct variable groups:   0 ,𝑎,𝑏,𝑠   𝑥, 0 ,𝑦,𝑠   𝐵,𝑎,𝑏,𝑠   𝐷,𝑎,𝑏,𝑔,𝑠   𝑥,𝐷,𝑦,𝑔   𝐺,𝑎,𝑏,𝑠   𝑥,𝐺,𝑦   𝐻,𝑎,𝑏,𝑠   𝑥,𝐻,𝑦   ,𝐼   𝑁,𝑎,𝑏,𝑔,𝑠   𝑥,𝑁,𝑦   𝑃,𝑎,𝑏,𝑠   𝑥,𝑃,𝑦   𝑅,𝑠,𝑥,𝑦   𝑆,𝑠   𝜑,𝑎,𝑏,𝑠   𝜑,𝑥,𝑦   𝑔,
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑥,𝑦,𝑔,)   𝐷()   𝑃(𝑔,)   + (𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑥,𝑦,𝑔,,𝑎,𝑏)   𝐺(𝑔,)   𝐻(𝑔,)   𝐼(𝑥,𝑦,𝑔,𝑠,𝑎,𝑏)   𝑁()   𝑉(𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   0 (𝑔,)

Proof of Theorem mhpind
StepHypRef Expression
1 mhpind.b . . 3 𝐵 = (Base‘𝑅)
2 mhpind.z . . 3 0 = (0g𝑅)
3 eqid 2730 . . 3 (+g𝑅) = (+g𝑅)
4 mhpind.r . . 3 (𝜑𝑅 ∈ Grp)
5 mhpind.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 ovexd 7446 . . . 4 (𝜑 → (ℕ0m 𝐼) ∈ V)
75, 6rabexd 5332 . . 3 (𝜑𝐷 ∈ V)
8 ssrab2 4076 . . . 4 {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷
98a1i 11 . . 3 (𝜑 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷)
10 mhpind.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
11 mhpind.i . . . . 5 (𝜑𝐼𝑉)
12 mhpind.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
1310, 2, 5, 11, 4, 12mhp0cl 21908 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
14 mhpind.0 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
1513, 14elind 4193 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ ((𝐻𝑁) ∩ 𝐺))
16 mhpind.s . . . . . 6 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1716eleq2i 2823 . . . . 5 (𝑎𝑆𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
1817biimpri 227 . . . 4 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝑆)
19 mhpind.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
20 eqid 2730 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
2111adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐼𝑉)
224adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑅 ∈ Grp)
2312adantr 479 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑁 ∈ ℕ0)
24 simplrr 774 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 𝑏𝐵)
251, 2grpidcl 18886 . . . . . . . . . . . . 13 (𝑅 ∈ Grp → 0𝐵)
264, 25syl 17 . . . . . . . . . . . 12 (𝜑0𝐵)
2726ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 0𝐵)
2824, 27ifcld 4573 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵)
2928fmpttd 7115 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵)
301fvexi 6904 . . . . . . . . . . . 12 𝐵 ∈ V
3130a1i 11 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
3231, 7elmapd 8836 . . . . . . . . . 10 (𝜑 → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3332adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3429, 33mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷))
35 eqid 2730 . . . . . . . . . 10 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
36 eqid 2730 . . . . . . . . . 10 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3735, 1, 5, 36, 11psrbas 21716 . . . . . . . . 9 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3837adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3934, 38eleqtrrd 2834 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
402fvexi 6904 . . . . . . . . . 10 0 ∈ V
4140a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
42 eqid 2730 . . . . . . . . 9 (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))
437, 41, 42sniffsupp 9397 . . . . . . . 8 (𝜑 → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4443adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4519, 35, 36, 2, 20mplelbas 21769 . . . . . . 7 ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃) ↔ ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 ))
4639, 44, 45sylanbrc 581 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃))
47 elneeldif 3961 . . . . . . . . . . . . 13 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑎𝑠)
4847necomd 2994 . . . . . . . . . . . 12 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
4948adantll 710 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5049adantlrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5150neneqd 2943 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → ¬ 𝑠 = 𝑎)
5251iffalsed 4538 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 )
537adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐷 ∈ V)
5452, 53suppss2 8187 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ 𝑆)
5554, 16sseqtrdi 4031 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
5610, 19, 20, 2, 5, 21, 22, 23, 46, 55ismhp2 21904 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐻𝑁))
57 mhpind.1 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
5856, 57elind 4193 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
5918, 58sylanr1 678 . . 3 ((𝜑 ∧ (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
60 mhpind.a . . . . 5 + = (+g𝑃)
6111adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝐼𝑉)
624adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑅 ∈ Grp)
6312adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑁 ∈ ℕ0)
64 elinel1 4194 . . . . . . 7 (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑥 ∈ (𝐻𝑁))
6564ad2antrl 724 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (𝐻𝑁))
6610, 19, 20, 61, 62, 63, 65mhpmpl 21906 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (Base‘𝑃))
67 elinel1 4194 . . . . . . 7 (𝑦 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑦 ∈ (𝐻𝑁))
6867ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (𝐻𝑁))
6910, 19, 20, 61, 62, 63, 68mhpmpl 21906 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (Base‘𝑃))
7019, 20, 3, 60, 66, 69mpladd 21787 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) = (𝑥f (+g𝑅)𝑦))
7110, 19, 60, 61, 62, 63, 65, 68mhpaddcl 21913 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ (𝐻𝑁))
72 mhpind.2 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
7371, 72elind 4193 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
7470, 73eqeltrrd 2832 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥f (+g𝑅)𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
75 mhpind.x . . . . 5 (𝜑𝑋 ∈ (𝐻𝑁))
7610, 19, 20, 11, 4, 12, 75mhpmpl 21906 . . . 4 (𝜑𝑋 ∈ (Base‘𝑃))
7719, 1, 20, 5, 76mplelf 21776 . . 3 (𝜑𝑋:𝐷𝐵)
7819, 20, 2, 76, 4mplelsfi 21773 . . 3 (𝜑𝑋 finSupp 0 )
7910, 2, 5, 11, 4, 12, 75mhpdeg 21907 . . 3 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
801, 2, 3, 4, 7, 9, 15, 59, 74, 77, 78, 79fsuppssind 41467 . 2 (𝜑𝑋 ∈ ((𝐻𝑁) ∩ 𝐺))
8180elin2d 4198 1 (𝜑𝑋𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938  {crab 3430  Vcvv 3472  cdif 3944  cin 3946  wss 3947  ifcif 4527  {csn 4627   class class class wbr 5147  cmpt 5230   × cxp 5673  ccnv 5674  cima 5678  wf 6538  cfv 6542  (class class class)co 7411  f cof 7670   supp csupp 8148  m cmap 8822  Fincfn 8941   finSupp cfsupp 9363  cn 12216  0cn0 12476  Basecbs 17148  s cress 17177  +gcplusg 17201  0gc0g 17389   Σg cgsu 17390  Grpcgrp 18855  fldccnfld 21144   mPwSer cmps 21676   mPoly cmpl 21678   mHomP cmhp 21891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-hash 14295  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-hom 17225  df-cco 17226  df-0g 17391  df-prds 17397  df-pws 17399  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-subg 19039  df-psr 21681  df-mpl 21683  df-mhp 21895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator