Mathbox for Steven Nguyen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhpind Structured version   Visualization version   GIF version

Theorem mhpind 39823
 Description: The homogeneous polynomials of degree 𝑁 are generated by the terms of degree 𝑁 and addition. (Contributed by SN, 28-Jul-2024.)
Hypotheses
Ref Expression
mhpind.h 𝐻 = (𝐼 mHomP 𝑅)
mhpind.b 𝐵 = (Base‘𝑅)
mhpind.z 0 = (0g𝑅)
mhpind.p 𝑃 = (𝐼 mPoly 𝑅)
mhpind.a + = (+g𝑃)
mhpind.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpind.s 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhpind.i (𝜑𝐼𝑉)
mhpind.r (𝜑𝑅 ∈ Grp)
mhpind.n (𝜑𝑁 ∈ ℕ0)
mhpind.x (𝜑𝑋 ∈ (𝐻𝑁))
mhpind.0 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
mhpind.1 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
mhpind.2 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
Assertion
Ref Expression
mhpind (𝜑𝑋𝐺)
Distinct variable groups:   0 ,𝑎,𝑏,𝑠   𝑥, 0 ,𝑦,𝑠   𝐵,𝑎,𝑏,𝑠   𝐷,𝑎,𝑏,𝑔,𝑠   𝑥,𝐷,𝑦,𝑔   𝐺,𝑎,𝑏,𝑠   𝑥,𝐺,𝑦   𝐻,𝑎,𝑏,𝑠   𝑥,𝐻,𝑦   ,𝐼   𝑁,𝑎,𝑏,𝑔,𝑠   𝑥,𝑁,𝑦   𝑃,𝑎,𝑏,𝑠   𝑥,𝑃,𝑦   𝑅,𝑠,𝑥,𝑦   𝑆,𝑠   𝜑,𝑎,𝑏,𝑠   𝜑,𝑥,𝑦   𝑔,
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑥,𝑦,𝑔,)   𝐷()   𝑃(𝑔,)   + (𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑥,𝑦,𝑔,,𝑎,𝑏)   𝐺(𝑔,)   𝐻(𝑔,)   𝐼(𝑥,𝑦,𝑔,𝑠,𝑎,𝑏)   𝑁()   𝑉(𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   0 (𝑔,)

Proof of Theorem mhpind
StepHypRef Expression
1 mhpind.b . . 3 𝐵 = (Base‘𝑅)
2 mhpind.z . . 3 0 = (0g𝑅)
3 eqid 2758 . . 3 (+g𝑅) = (+g𝑅)
4 mhpind.r . . 3 (𝜑𝑅 ∈ Grp)
5 mhpind.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 ovexd 7191 . . . 4 (𝜑 → (ℕ0m 𝐼) ∈ V)
75, 6rabexd 5207 . . 3 (𝜑𝐷 ∈ V)
8 ssrab2 3986 . . . 4 {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷
98a1i 11 . . 3 (𝜑 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷)
10 mhpind.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
11 mhpind.i . . . . 5 (𝜑𝐼𝑉)
12 mhpind.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
1310, 2, 5, 11, 4, 12mhp0cl 20902 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
14 mhpind.0 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
1513, 14elind 4101 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ ((𝐻𝑁) ∩ 𝐺))
16 mhpind.s . . . . . 6 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1716eleq2i 2843 . . . . 5 (𝑎𝑆𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
1817biimpri 231 . . . 4 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝑆)
19 mhpind.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
20 eqid 2758 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
2111adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐼𝑉)
224adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑅 ∈ Grp)
2312adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑁 ∈ ℕ0)
24 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 𝑏𝐵)
251, 2grpidcl 18211 . . . . . . . . . . . . 13 (𝑅 ∈ Grp → 0𝐵)
264, 25syl 17 . . . . . . . . . . . 12 (𝜑0𝐵)
2726ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 0𝐵)
2824, 27ifcld 4469 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵)
2928fmpttd 6876 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵)
301fvexi 6677 . . . . . . . . . . . 12 𝐵 ∈ V
3130a1i 11 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
3231, 7elmapd 8436 . . . . . . . . . 10 (𝜑 → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3332adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3429, 33mpbird 260 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷))
35 eqid 2758 . . . . . . . . . 10 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
36 eqid 2758 . . . . . . . . . 10 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3735, 1, 5, 36, 11psrbas 20719 . . . . . . . . 9 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3837adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3934, 38eleqtrrd 2855 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
402fvexi 6677 . . . . . . . . . 10 0 ∈ V
4140a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
42 eqid 2758 . . . . . . . . 9 (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))
437, 41, 42sniffsupp 8910 . . . . . . . 8 (𝜑 → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4443adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4519, 35, 36, 2, 20mplelbas 20771 . . . . . . 7 ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃) ↔ ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 ))
4639, 44, 45sylanbrc 586 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃))
47 elneeldif 3874 . . . . . . . . . . . . 13 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑎𝑠)
4847necomd 3006 . . . . . . . . . . . 12 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
4948adantll 713 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5049adantlrr 720 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5150neneqd 2956 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → ¬ 𝑠 = 𝑎)
5251iffalsed 4434 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 )
537adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐷 ∈ V)
5452, 53suppss2 7880 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ 𝑆)
5554, 16sseqtrdi 3944 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
5610, 19, 20, 2, 5, 21, 22, 23, 46, 55ismhp2 20898 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐻𝑁))
57 mhpind.1 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
5856, 57elind 4101 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
5918, 58sylanr1 681 . . 3 ((𝜑 ∧ (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
60 mhpind.a . . . . 5 + = (+g𝑃)
6111adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝐼𝑉)
624adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑅 ∈ Grp)
6312adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑁 ∈ ℕ0)
64 elinel1 4102 . . . . . . 7 (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑥 ∈ (𝐻𝑁))
6564ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (𝐻𝑁))
6610, 19, 20, 61, 62, 63, 65mhpmpl 20900 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (Base‘𝑃))
67 elinel1 4102 . . . . . . 7 (𝑦 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑦 ∈ (𝐻𝑁))
6867ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (𝐻𝑁))
6910, 19, 20, 61, 62, 63, 68mhpmpl 20900 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (Base‘𝑃))
7019, 20, 3, 60, 66, 69mpladd 20785 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) = (𝑥f (+g𝑅)𝑦))
7110, 19, 60, 61, 62, 63, 65, 68mhpaddcl 20907 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ (𝐻𝑁))
72 mhpind.2 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
7371, 72elind 4101 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
7470, 73eqeltrrd 2853 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥f (+g𝑅)𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
75 mhpind.x . . . . 5 (𝜑𝑋 ∈ (𝐻𝑁))
7610, 19, 20, 11, 4, 12, 75mhpmpl 20900 . . . 4 (𝜑𝑋 ∈ (Base‘𝑃))
7719, 1, 20, 5, 76mplelf 20776 . . 3 (𝜑𝑋:𝐷𝐵)
7819, 20, 2, 76, 4mplelsfi 20773 . . 3 (𝜑𝑋 finSupp 0 )
7910, 2, 5, 11, 4, 12, 75mhpdeg 20901 . . 3 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
801, 2, 3, 4, 7, 9, 15, 59, 74, 77, 78, 79fsuppssind 39822 . 2 (𝜑𝑋 ∈ ((𝐻𝑁) ∩ 𝐺))
8180elin2d 4106 1 (𝜑𝑋𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  {crab 3074  Vcvv 3409   ∖ cdif 3857   ∩ cin 3859   ⊆ wss 3860  ifcif 4423  {csn 4525   class class class wbr 5036   ↦ cmpt 5116   × cxp 5526  ◡ccnv 5527   “ cima 5531  ⟶wf 6336  ‘cfv 6340  (class class class)co 7156   ∘f cof 7409   supp csupp 7841   ↑m cmap 8422  Fincfn 8540   finSupp cfsupp 8879  ℕcn 11687  ℕ0cn0 11947  Basecbs 16554   ↾s cress 16555  +gcplusg 16636  0gc0g 16784   Σg cgsu 16785  Grpcgrp 18182  ℂfldccnfld 20179   mPwSer cmps 20679   mPoly cmpl 20681   mHomP cmhp 20885 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-oadd 8122  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-hash 13754  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-tset 16655  df-0g 16786  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-grp 18185  df-minusg 18186  df-subg 18356  df-psr 20684  df-mpl 20686  df-mhp 20889 This theorem is referenced by:  mhphf  39825
 Copyright terms: Public domain W3C validator