Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhpind Structured version   Visualization version   GIF version

Theorem mhpind 40955
Description: The homogeneous polynomials of degree 𝑁 are generated by the terms of degree 𝑁 and addition. (Contributed by SN, 28-Jul-2024.)
Hypotheses
Ref Expression
mhpind.h 𝐻 = (𝐼 mHomP 𝑅)
mhpind.b 𝐵 = (Base‘𝑅)
mhpind.z 0 = (0g𝑅)
mhpind.p 𝑃 = (𝐼 mPoly 𝑅)
mhpind.a + = (+g𝑃)
mhpind.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpind.s 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhpind.i (𝜑𝐼𝑉)
mhpind.r (𝜑𝑅 ∈ Grp)
mhpind.n (𝜑𝑁 ∈ ℕ0)
mhpind.x (𝜑𝑋 ∈ (𝐻𝑁))
mhpind.0 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
mhpind.1 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
mhpind.2 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
Assertion
Ref Expression
mhpind (𝜑𝑋𝐺)
Distinct variable groups:   0 ,𝑎,𝑏,𝑠   𝑥, 0 ,𝑦,𝑠   𝐵,𝑎,𝑏,𝑠   𝐷,𝑎,𝑏,𝑔,𝑠   𝑥,𝐷,𝑦,𝑔   𝐺,𝑎,𝑏,𝑠   𝑥,𝐺,𝑦   𝐻,𝑎,𝑏,𝑠   𝑥,𝐻,𝑦   ,𝐼   𝑁,𝑎,𝑏,𝑔,𝑠   𝑥,𝑁,𝑦   𝑃,𝑎,𝑏,𝑠   𝑥,𝑃,𝑦   𝑅,𝑠,𝑥,𝑦   𝑆,𝑠   𝜑,𝑎,𝑏,𝑠   𝜑,𝑥,𝑦   𝑔,
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑥,𝑦,𝑔,)   𝐷()   𝑃(𝑔,)   + (𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑥,𝑦,𝑔,,𝑎,𝑏)   𝐺(𝑔,)   𝐻(𝑔,)   𝐼(𝑥,𝑦,𝑔,𝑠,𝑎,𝑏)   𝑁()   𝑉(𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   𝑋(𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   0 (𝑔,)

Proof of Theorem mhpind
StepHypRef Expression
1 mhpind.b . . 3 𝐵 = (Base‘𝑅)
2 mhpind.z . . 3 0 = (0g𝑅)
3 eqid 2731 . . 3 (+g𝑅) = (+g𝑅)
4 mhpind.r . . 3 (𝜑𝑅 ∈ Grp)
5 mhpind.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 ovexd 7428 . . . 4 (𝜑 → (ℕ0m 𝐼) ∈ V)
75, 6rabexd 5326 . . 3 (𝜑𝐷 ∈ V)
8 ssrab2 4073 . . . 4 {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷
98a1i 11 . . 3 (𝜑 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷)
10 mhpind.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
11 mhpind.i . . . . 5 (𝜑𝐼𝑉)
12 mhpind.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
1310, 2, 5, 11, 4, 12mhp0cl 21618 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
14 mhpind.0 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
1513, 14elind 4190 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ ((𝐻𝑁) ∩ 𝐺))
16 mhpind.s . . . . . 6 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1716eleq2i 2824 . . . . 5 (𝑎𝑆𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
1817biimpri 227 . . . 4 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝑆)
19 mhpind.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
20 eqid 2731 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
2111adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐼𝑉)
224adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑅 ∈ Grp)
2312adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑁 ∈ ℕ0)
24 simplrr 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 𝑏𝐵)
251, 2grpidcl 18825 . . . . . . . . . . . . 13 (𝑅 ∈ Grp → 0𝐵)
264, 25syl 17 . . . . . . . . . . . 12 (𝜑0𝐵)
2726ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 0𝐵)
2824, 27ifcld 4568 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵)
2928fmpttd 7099 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵)
301fvexi 6892 . . . . . . . . . . . 12 𝐵 ∈ V
3130a1i 11 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
3231, 7elmapd 8817 . . . . . . . . . 10 (𝜑 → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3332adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3429, 33mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷))
35 eqid 2731 . . . . . . . . . 10 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
36 eqid 2731 . . . . . . . . . 10 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3735, 1, 5, 36, 11psrbas 21428 . . . . . . . . 9 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3837adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
3934, 38eleqtrrd 2835 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
402fvexi 6892 . . . . . . . . . 10 0 ∈ V
4140a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
42 eqid 2731 . . . . . . . . 9 (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))
437, 41, 42sniffsupp 9377 . . . . . . . 8 (𝜑 → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4443adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4519, 35, 36, 2, 20mplelbas 21481 . . . . . . 7 ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃) ↔ ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 ))
4639, 44, 45sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃))
47 elneeldif 3958 . . . . . . . . . . . . 13 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑎𝑠)
4847necomd 2995 . . . . . . . . . . . 12 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
4948adantll 712 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5049adantlrr 719 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5150neneqd 2944 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → ¬ 𝑠 = 𝑎)
5251iffalsed 4533 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 )
537adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐷 ∈ V)
5452, 53suppss2 8167 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ 𝑆)
5554, 16sseqtrdi 4028 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
5610, 19, 20, 2, 5, 21, 22, 23, 46, 55ismhp2 21614 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐻𝑁))
57 mhpind.1 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
5856, 57elind 4190 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
5918, 58sylanr1 680 . . 3 ((𝜑 ∧ (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
60 mhpind.a . . . . 5 + = (+g𝑃)
6111adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝐼𝑉)
624adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑅 ∈ Grp)
6312adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑁 ∈ ℕ0)
64 elinel1 4191 . . . . . . 7 (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑥 ∈ (𝐻𝑁))
6564ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (𝐻𝑁))
6610, 19, 20, 61, 62, 63, 65mhpmpl 21616 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (Base‘𝑃))
67 elinel1 4191 . . . . . . 7 (𝑦 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑦 ∈ (𝐻𝑁))
6867ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (𝐻𝑁))
6910, 19, 20, 61, 62, 63, 68mhpmpl 21616 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (Base‘𝑃))
7019, 20, 3, 60, 66, 69mpladd 21495 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) = (𝑥f (+g𝑅)𝑦))
7110, 19, 60, 61, 62, 63, 65, 68mhpaddcl 21623 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ (𝐻𝑁))
72 mhpind.2 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
7371, 72elind 4190 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
7470, 73eqeltrrd 2833 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥f (+g𝑅)𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
75 mhpind.x . . . . 5 (𝜑𝑋 ∈ (𝐻𝑁))
7610, 19, 20, 11, 4, 12, 75mhpmpl 21616 . . . 4 (𝜑𝑋 ∈ (Base‘𝑃))
7719, 1, 20, 5, 76mplelf 21486 . . 3 (𝜑𝑋:𝐷𝐵)
7819, 20, 2, 76, 4mplelsfi 21483 . . 3 (𝜑𝑋 finSupp 0 )
7910, 2, 5, 11, 4, 12, 75mhpdeg 21617 . . 3 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
801, 2, 3, 4, 7, 9, 15, 59, 74, 77, 78, 79fsuppssind 40954 . 2 (𝜑𝑋 ∈ ((𝐻𝑁) ∩ 𝐺))
8180elin2d 4195 1 (𝜑𝑋𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  {crab 3431  Vcvv 3473  cdif 3941  cin 3943  wss 3944  ifcif 4522  {csn 4622   class class class wbr 5141  cmpt 5224   × cxp 5667  ccnv 5668  cima 5672  wf 6528  cfv 6532  (class class class)co 7393  f cof 7651   supp csupp 8128  m cmap 8803  Fincfn 8922   finSupp cfsupp 9344  cn 12194  0cn0 12454  Basecbs 17126  s cress 17155  +gcplusg 17179  0gc0g 17367   Σg cgsu 17368  Grpcgrp 18794  fldccnfld 20878   mPwSer cmps 21388   mPoly cmpl 21390   mHomP cmhp 21601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-oadd 8452  df-er 8686  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-dju 9878  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-hash 14273  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17369  df-prds 17375  df-pws 17377  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-minusg 18798  df-subg 18975  df-psr 21393  df-mpl 21395  df-mhp 21605
This theorem is referenced by:  mhphf  40957
  Copyright terms: Public domain W3C validator