Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhpind Structured version   Visualization version   GIF version

Theorem mhpind 42549
Description: The homogeneous polynomials of degree 𝑁 are generated by the terms of degree 𝑁 and addition. (Contributed by SN, 28-Jul-2024.)
Hypotheses
Ref Expression
mhpind.h 𝐻 = (𝐼 mHomP 𝑅)
mhpind.b 𝐵 = (Base‘𝑅)
mhpind.z 0 = (0g𝑅)
mhpind.p 𝑃 = (𝐼 mPoly 𝑅)
mhpind.a + = (+g𝑃)
mhpind.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpind.s 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhpind.r (𝜑𝑅 ∈ Grp)
mhpind.x (𝜑𝑋 ∈ (𝐻𝑁))
mhpind.0 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
mhpind.1 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
mhpind.2 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
Assertion
Ref Expression
mhpind (𝜑𝑋𝐺)
Distinct variable groups:   0 ,𝑎,𝑏,𝑠   𝑥, 0 ,𝑦,𝑠   𝐵,𝑎,𝑏,𝑠   𝐷,𝑎,𝑏,𝑔,𝑠   𝑥,𝐷,𝑦,𝑔   𝐺,𝑎,𝑏,𝑠   𝑥,𝐺,𝑦   𝐻,𝑎,𝑏,𝑠   𝑥,𝐻,𝑦   ,𝐼   𝑁,𝑎,𝑏,𝑔,𝑠   𝑥,𝑁,𝑦   𝑃,𝑎,𝑏,𝑠   𝑥,𝑃,𝑦   𝑅,𝑠,𝑥,𝑦   𝑆,𝑠   𝜑,𝑎,𝑏,𝑠   𝜑,𝑥,𝑦   𝑔,
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑥,𝑦,𝑔,)   𝐷()   𝑃(𝑔,)   + (𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   𝑅(𝑔,,𝑎,𝑏)   𝑆(𝑥,𝑦,𝑔,,𝑎,𝑏)   𝐺(𝑔,)   𝐻(𝑔,)   𝐼(𝑥,𝑦,𝑔,𝑠,𝑎,𝑏)   𝑁()   𝑋(𝑥,𝑦,𝑔,,𝑠,𝑎,𝑏)   0 (𝑔,)

Proof of Theorem mhpind
StepHypRef Expression
1 mhpind.b . . 3 𝐵 = (Base‘𝑅)
2 mhpind.z . . 3 0 = (0g𝑅)
3 eqid 2740 . . 3 (+g𝑅) = (+g𝑅)
4 mhpind.r . . 3 (𝜑𝑅 ∈ Grp)
5 mhpind.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 ovexd 7483 . . . 4 (𝜑 → (ℕ0m 𝐼) ∈ V)
75, 6rabexd 5358 . . 3 (𝜑𝐷 ∈ V)
8 ssrab2 4103 . . . 4 {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷
98a1i 11 . . 3 (𝜑 → {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ⊆ 𝐷)
10 mhpind.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
11 reldmmhp 22164 . . . . . 6 Rel dom mHomP
12 mhpind.x . . . . . 6 (𝜑𝑋 ∈ (𝐻𝑁))
1311, 10, 12elfvov1 7490 . . . . 5 (𝜑𝐼 ∈ V)
1410, 12mhprcl 22170 . . . . 5 (𝜑𝑁 ∈ ℕ0)
1510, 2, 5, 13, 4, 14mhp0cl 22173 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
16 mhpind.0 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)
1715, 16elind 4223 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ ((𝐻𝑁) ∩ 𝐺))
18 mhpind.s . . . . . 6 𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1918eleq2i 2836 . . . . 5 (𝑎𝑆𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
2019biimpri 228 . . . 4 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝑆)
21 mhpind.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
22 eqid 2740 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
2313adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐼 ∈ V)
244adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑅 ∈ Grp)
2514adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝑁 ∈ ℕ0)
26 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 𝑏𝐵)
271, 2grpidcl 19005 . . . . . . . . . . . . 13 (𝑅 ∈ Grp → 0𝐵)
284, 27syl 17 . . . . . . . . . . . 12 (𝜑0𝐵)
2928ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → 0𝐵)
3026, 29ifcld 4594 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠𝐷) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵)
3130fmpttd 7149 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵)
321fvexi 6934 . . . . . . . . . . . 12 𝐵 ∈ V
3332a1i 11 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
3433, 7elmapd 8898 . . . . . . . . . 10 (𝜑 → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3534adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷) ↔ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝐷𝐵))
3631, 35mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐵m 𝐷))
37 eqid 2740 . . . . . . . . . 10 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
38 eqid 2740 . . . . . . . . . 10 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3937, 1, 5, 38, 13psrbas 21976 . . . . . . . . 9 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
4039adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (Base‘(𝐼 mPwSer 𝑅)) = (𝐵m 𝐷))
4136, 40eleqtrrd 2847 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
422fvexi 6934 . . . . . . . . . 10 0 ∈ V
4342a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
44 eqid 2740 . . . . . . . . 9 (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))
457, 43, 44sniffsupp 9469 . . . . . . . 8 (𝜑 → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4645adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 )
4721, 37, 38, 2, 22mplelbas 22034 . . . . . . 7 ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃) ↔ ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) finSupp 0 ))
4841, 46, 47sylanbrc 582 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (Base‘𝑃))
49 elneeldif 3990 . . . . . . . . . . . . 13 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑎𝑠)
5049necomd 3002 . . . . . . . . . . . 12 ((𝑎𝑆𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5150adantll 713 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5251adantlrr 720 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → 𝑠𝑎)
5352neneqd 2951 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → ¬ 𝑠 = 𝑎)
5453iffalsed 4559 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝐵)) ∧ 𝑠 ∈ (𝐷𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 )
557adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → 𝐷 ∈ V)
5654, 55suppss2 8241 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ 𝑆)
5756, 18sseqtrdi 4059 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → ((𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
5810, 21, 22, 2, 5, 23, 24, 25, 48, 57ismhp2 22168 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ (𝐻𝑁))
59 mhpind.1 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)
6058, 59elind 4223 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
6120, 60sylanr1 681 . . 3 ((𝜑 ∧ (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ∧ 𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ ((𝐻𝑁) ∩ 𝐺))
62 mhpind.a . . . . 5 + = (+g𝑃)
63 elinel1 4224 . . . . . . 7 (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑥 ∈ (𝐻𝑁))
6463ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (𝐻𝑁))
6510, 21, 22, 64mhpmpl 22171 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑥 ∈ (Base‘𝑃))
66 elinel1 4224 . . . . . . 7 (𝑦 ∈ ((𝐻𝑁) ∩ 𝐺) → 𝑦 ∈ (𝐻𝑁))
6766ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (𝐻𝑁))
6810, 21, 22, 67mhpmpl 22171 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑦 ∈ (Base‘𝑃))
6921, 22, 3, 62, 65, 68mpladd 22052 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) = (𝑥f (+g𝑅)𝑦))
704adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → 𝑅 ∈ Grp)
7110, 21, 62, 70, 64, 67mhpaddcl 22178 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ (𝐻𝑁))
72 mhpind.2 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)
7371, 72elind 4223 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
7469, 73eqeltrrd 2845 . . 3 ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥f (+g𝑅)𝑦) ∈ ((𝐻𝑁) ∩ 𝐺))
7510, 21, 22, 12mhpmpl 22171 . . . 4 (𝜑𝑋 ∈ (Base‘𝑃))
7621, 1, 22, 5, 75mplelf 22041 . . 3 (𝜑𝑋:𝐷𝐵)
7721, 22, 2, 75, 4mplelsfi 22038 . . 3 (𝜑𝑋 finSupp 0 )
7810, 2, 5, 12mhpdeg 22172 . . 3 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
791, 2, 3, 4, 7, 9, 17, 61, 74, 76, 77, 78fsuppssind 42548 . 2 (𝜑𝑋 ∈ ((𝐻𝑁) ∩ 𝐺))
8079elin2d 4228 1 (𝜑𝑋𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  wss 3976  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  cn 12293  0cn0 12553  Basecbs 17258  s cress 17287  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  Grpcgrp 18973  fldccnfld 21387   mPwSer cmps 21947   mPoly cmpl 21949   mHomP cmhp 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-psr 21952  df-mpl 21954  df-mhp 22163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator