MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslsp Structured version   Visualization version   GIF version

Theorem frlmsslsp 21834
Description: A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmsslsp.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslsp.u 𝑈 = (𝑅 unitVec 𝐼)
frlmsslsp.k 𝐾 = (LSpan‘𝑌)
frlmsslsp.b 𝐵 = (Base‘𝑌)
frlmsslsp.z 0 = (0g𝑅)
frlmsslsp.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
Assertion
Ref Expression
frlmsslsp ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑈   𝑥,𝐵   𝑥, 0   𝑥,𝑅   𝑥,𝐼   𝑥,𝑉   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslsp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmsslsp.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
21frlmlmod 21787 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ LMod)
323adant3 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ LMod)
4 eqid 2735 . . . 4 (LSubSp‘𝑌) = (LSubSp‘𝑌)
5 frlmsslsp.b . . . 4 𝐵 = (Base‘𝑌)
6 frlmsslsp.z . . . 4 0 = (0g𝑅)
7 frlmsslsp.c . . . 4 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
81, 4, 5, 6, 7frlmsslss2 21813 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 ∈ (LSubSp‘𝑌))
9 frlmsslsp.u . . . . . . . . . 10 𝑈 = (𝑅 unitVec 𝐼)
109, 1, 5uvcff 21829 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
11103adant3 1131 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈:𝐼𝐵)
1211adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑈:𝐼𝐵)
13 simp3 1137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽𝐼)
1413sselda 3995 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑦𝐼)
1512, 14ffvelcdmd 7105 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐵)
16 simpl2 1191 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝐼𝑉)
17 eqid 2735 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
181, 17, 5frlmbasf 21798 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑈𝑦) ∈ 𝐵) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
1916, 15, 18syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
20 simpll1 1211 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑅 ∈ Ring)
21 simpll2 1212 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝐼𝑉)
2214adantr 480 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝐼)
23 eldifi 4141 . . . . . . . . 9 (𝑥 ∈ (𝐼𝐽) → 𝑥𝐼)
2423adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑥𝐼)
25 elneeldif 3977 . . . . . . . . 9 ((𝑦𝐽𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
2625adantll 714 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
279, 20, 21, 22, 24, 26, 6uvcvv0 21828 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → ((𝑈𝑦)‘𝑥) = 0 )
2819, 27suppss 8218 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → ((𝑈𝑦) supp 0 ) ⊆ 𝐽)
29 oveq1 7438 . . . . . . . 8 (𝑥 = (𝑈𝑦) → (𝑥 supp 0 ) = ((𝑈𝑦) supp 0 ))
3029sseq1d 4027 . . . . . . 7 (𝑥 = (𝑈𝑦) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3130, 7elrab2 3698 . . . . . 6 ((𝑈𝑦) ∈ 𝐶 ↔ ((𝑈𝑦) ∈ 𝐵 ∧ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3215, 28, 31sylanbrc 583 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐶)
3332ralrimiva 3144 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶)
3411ffund 6741 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → Fun 𝑈)
3511fdmd 6747 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → dom 𝑈 = 𝐼)
3613, 35sseqtrrd 4037 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽 ⊆ dom 𝑈)
37 funimass4 6973 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
3834, 36, 37syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
3933, 38mpbird 257 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐶)
40 frlmsslsp.k . . . 4 𝐾 = (LSpan‘𝑌)
414, 40lspssp 21004 . . 3 ((𝑌 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝑌) ∧ (𝑈𝐽) ⊆ 𝐶) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
423, 8, 39, 41syl3anc 1370 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
43 simpl1 1190 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑅 ∈ Ring)
44 simpl2 1191 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝐼𝑉)
457ssrab3 4092 . . . . . 6 𝐶𝐵
4645a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝐵)
4746sselda 3995 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦𝐵)
48 eqid 2735 . . . . 5 ( ·𝑠𝑌) = ( ·𝑠𝑌)
499, 1, 5, 48uvcresum 21831 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝑦𝐵) → 𝑦 = (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)))
5043, 44, 47, 49syl3anc 1370 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 = (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)))
51 eqid 2735 . . . 4 (0g𝑌) = (0g𝑌)
52 lmodabl 20924 . . . . . 6 (𝑌 ∈ LMod → 𝑌 ∈ Abel)
533, 52syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ Abel)
5453adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑌 ∈ Abel)
55 imassrn 6091 . . . . . . . 8 (𝑈𝐽) ⊆ ran 𝑈
5611frnd 6745 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ran 𝑈𝐵)
5755, 56sstrid 4007 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐵)
585, 4, 40lspcl 20992 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
593, 57, 58syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
604lsssubg 20973 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
613, 59, 60syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
6261adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
631, 17, 5frlmbasf 21798 . . . . . . . . 9 ((𝐼𝑉𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
64633ad2antl2 1185 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
6564ffnd 6738 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦 Fn 𝐼)
6611ffnd 6738 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈 Fn 𝐼)
6766adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈 Fn 𝐼)
68 simpl2 1191 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝐼𝑉)
69 inidm 4235 . . . . . . 7 (𝐼𝐼) = 𝐼
7065, 67, 68, 68, 69offn 7710 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
7147, 70syldan 591 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
7247, 65syldan 591 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
7372adantrr 717 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑦 Fn 𝐼)
7466adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑈 Fn 𝐼)
75 simpl2 1191 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝐼𝑉)
76 simprr 773 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑧𝐼)
77 fnfvof 7714 . . . . . . . . 9 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
7873, 74, 75, 76, 77syl22anc 839 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
793adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑌 ∈ LMod)
8059adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
8145sseli 3991 . . . . . . . . . . . . . . . 16 (𝑦𝐶𝑦𝐵)
8281, 64sylan2 593 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦:𝐼⟶(Base‘𝑅))
8382adantrr 717 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑦:𝐼⟶(Base‘𝑅))
8413sselda 3995 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → 𝑧𝐼)
8584adantrl 716 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑧𝐼)
8683, 85ffvelcdmd 7105 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘𝑅))
871frlmsca 21791 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝑌))
88873adant3 1131 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑅 = (Scalar‘𝑌))
8988fveq2d 6911 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9089adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9186, 90eleqtrd 2841 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)))
925, 40lspssid 21001 . . . . . . . . . . . . . . 15 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
933, 57, 92syl2anc 584 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
9493adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
95 funfvima2 7251 . . . . . . . . . . . . . . . 16 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
9634, 36, 95syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
9796imp 406 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → (𝑈𝑧) ∈ (𝑈𝐽))
9897adantrl 716 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝑈𝐽))
9994, 98sseldd 3996 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))
100 eqid 2735 . . . . . . . . . . . . 13 (Scalar‘𝑌) = (Scalar‘𝑌)
101 eqid 2735 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
102100, 48, 101, 4lssvscl 20971 . . . . . . . . . . . 12 (((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) ∧ ((𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
10379, 80, 91, 99, 102syl22anc 839 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
104103anassrs 467 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
105104adantlrr 721 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
106 id 22 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
107106adantrr 717 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
108107adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
109 simplrr 778 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧𝐼)
110 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ¬ 𝑧𝐽)
111109, 110eldifd 3974 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧 ∈ (𝐼𝐽))
112 oveq1 7438 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 supp 0 ) = (𝑦 supp 0 ))
113112sseq1d 4027 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑦 supp 0 ) ⊆ 𝐽))
114113, 7elrab2 3698 . . . . . . . . . . . . . . . . 17 (𝑦𝐶 ↔ (𝑦𝐵 ∧ (𝑦 supp 0 ) ⊆ 𝐽))
115114simprbi 496 . . . . . . . . . . . . . . . 16 (𝑦𝐶 → (𝑦 supp 0 ) ⊆ 𝐽)
116115adantl 481 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ⊆ 𝐽)
1176fvexi 6921 . . . . . . . . . . . . . . . 16 0 ∈ V
118117a1i 11 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 0 ∈ V)
11982, 116, 44, 118suppssr 8219 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧 ∈ (𝐼𝐽)) → (𝑦𝑧) = 0 )
120108, 111, 119syl2anc 584 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = 0 )
12188fveq2d 6911 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (0g𝑅) = (0g‘(Scalar‘𝑌)))
1226, 121eqtrid 2787 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 0 = (0g‘(Scalar‘𝑌)))
123122ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 0 = (0g‘(Scalar‘𝑌)))
124120, 123eqtrd 2775 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = (0g‘(Scalar‘𝑌)))
125124oveq1d 7446 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)))
1263ad2antrr 726 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑌 ∈ LMod)
12711ffvelcdmda 7104 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐼) → (𝑈𝑧) ∈ 𝐵)
128127adantrl 716 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → (𝑈𝑧) ∈ 𝐵)
129128adantr 480 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑈𝑧) ∈ 𝐵)
130 eqid 2735 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1315, 100, 48, 130, 51lmod0vs 20910 . . . . . . . . . . . 12 ((𝑌 ∈ LMod ∧ (𝑈𝑧) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
132126, 129, 131syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
133125, 132eqtrd 2775 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
13459ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
13551, 4lss0cl 20963 . . . . . . . . . . 11 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
136126, 134, 135syl2anc 584 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
137133, 136eqeltrd 2839 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
138105, 137pm2.61dan 813 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
13978, 138eqeltrd 2839 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
140139expr 456 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑧𝐼 → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
141140ralrimiv 3143 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ∀𝑧𝐼 ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
142 ffnfv 7139 . . . . 5 ((𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 ∧ ∀𝑧𝐼 ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
14371, 141, 142sylanbrc 583 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)))
1441, 6, 5frlmbasfsupp 21796 . . . . . . . 8 ((𝐼𝑉𝑦𝐵) → 𝑦 finSupp 0 )
145144fsuppimpd 9407 . . . . . . 7 ((𝐼𝑉𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
14644, 47, 145syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ∈ Fin)
147 dffn2 6739 . . . . . . . . 9 ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 ↔ (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶V)
14870, 147sylib 218 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶V)
14965adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑦 Fn 𝐼)
15066ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑈 Fn 𝐼)
151 simpll2 1212 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝐼𝑉)
152 eldifi 4141 . . . . . . . . . . 11 (𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 )) → 𝑥𝐼)
153152adantl 481 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑥𝐼)
154 fnfvof 7714 . . . . . . . . . 10 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
155149, 150, 151, 153, 154syl22anc 839 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
156 ssidd 4019 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
157117a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 0 ∈ V)
15864, 156, 68, 157suppssr 8219 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = 0 )
159122ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 0 = (0g‘(Scalar‘𝑌)))
160158, 159eqtrd 2775 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = (0g‘(Scalar‘𝑌)))
161160oveq1d 7446 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)))
1623ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑌 ∈ LMod)
16311adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈:𝐼𝐵)
164 ffvelcdm 7101 . . . . . . . . . . 11 ((𝑈:𝐼𝐵𝑥𝐼) → (𝑈𝑥) ∈ 𝐵)
165163, 152, 164syl2an 596 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑈𝑥) ∈ 𝐵)
1665, 100, 48, 130, 51lmod0vs 20910 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ (𝑈𝑥) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
167162, 165, 166syl2anc 584 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
168155, 161, 1673eqtrd 2779 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = (0g𝑌))
169148, 168suppss 8218 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
17047, 169syldan 591 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
171146, 170ssfid 9299 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin)
172 simp2 1136 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐼𝑉)
1731, 17, 5frlmbasmap 21797 . . . . . . . . 9 ((𝐼𝑉𝑦𝐵) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼))
174172, 81, 173syl2an 596 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼))
175 elmapfn 8904 . . . . . . . 8 (𝑦 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑦 Fn 𝐼)
176174, 175syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
17711adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈:𝐼𝐵)
178177ffnd 6738 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈 Fn 𝐼)
179176, 178, 44, 44offun 7711 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → Fun (𝑦f ( ·𝑠𝑌)𝑈))
180 ovexd 7466 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) ∈ V)
181 fvexd 6922 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (0g𝑌) ∈ V)
182 funisfsupp 9405 . . . . . 6 ((Fun (𝑦f ( ·𝑠𝑌)𝑈) ∧ (𝑦f ( ·𝑠𝑌)𝑈) ∈ V ∧ (0g𝑌) ∈ V) → ((𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
183179, 180, 181, 182syl3anc 1370 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
184171, 183mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌))
18551, 54, 44, 62, 143, 184gsumsubgcl 19953 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)) ∈ (𝐾‘(𝑈𝐽)))
18650, 185eqeltrd 2839 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ (𝐾‘(𝑈𝐽)))
18742, 186eqelssd 4017 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  Vcvv 3478  cdif 3960  wss 3963   class class class wbr 5148  dom cdm 5689  ran crn 5690  cima 5692  Fun wfun 6557   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695   supp csupp 8184  m cmap 8865  Fincfn 8984   finSupp cfsupp 9399  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486   Σg cgsu 17487  SubGrpcsubg 19151  Abelcabl 19814  Ringcrg 20251  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987   freeLMod cfrlm 21784   unitVec cuvc 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-uvc 21821
This theorem is referenced by:  frlmlbs  21835
  Copyright terms: Public domain W3C validator