MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslsp Structured version   Visualization version   GIF version

Theorem frlmsslsp 20942
Description: A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmsslsp.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslsp.u 𝑈 = (𝑅 unitVec 𝐼)
frlmsslsp.k 𝐾 = (LSpan‘𝑌)
frlmsslsp.b 𝐵 = (Base‘𝑌)
frlmsslsp.z 0 = (0g𝑅)
frlmsslsp.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
Assertion
Ref Expression
frlmsslsp ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑈   𝑥,𝐵   𝑥, 0   𝑥,𝑅   𝑥,𝐼   𝑥,𝑉   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslsp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmsslsp.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
21frlmlmod 20895 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ LMod)
323adant3 1128 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ LMod)
4 eqid 2823 . . . 4 (LSubSp‘𝑌) = (LSubSp‘𝑌)
5 frlmsslsp.b . . . 4 𝐵 = (Base‘𝑌)
6 frlmsslsp.z . . . 4 0 = (0g𝑅)
7 frlmsslsp.c . . . 4 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
81, 4, 5, 6, 7frlmsslss2 20921 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 ∈ (LSubSp‘𝑌))
9 frlmsslsp.u . . . . . . . . . 10 𝑈 = (𝑅 unitVec 𝐼)
109, 1, 5uvcff 20937 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
11103adant3 1128 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈:𝐼𝐵)
1211adantr 483 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑈:𝐼𝐵)
13 simp3 1134 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽𝐼)
1413sselda 3969 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑦𝐼)
1512, 14ffvelrnd 6854 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐵)
16 simpl2 1188 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝐼𝑉)
17 eqid 2823 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
181, 17, 5frlmbasf 20906 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑈𝑦) ∈ 𝐵) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
1916, 15, 18syl2anc 586 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
20 simpll1 1208 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑅 ∈ Ring)
21 simpll2 1209 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝐼𝑉)
2214adantr 483 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝐼)
23 eldifi 4105 . . . . . . . . 9 (𝑥 ∈ (𝐼𝐽) → 𝑥𝐼)
2423adantl 484 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑥𝐼)
25 disjdif 4423 . . . . . . . . . 10 (𝐽 ∩ (𝐼𝐽)) = ∅
26 disjne 4406 . . . . . . . . . 10 (((𝐽 ∩ (𝐼𝐽)) = ∅ ∧ 𝑦𝐽𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
2725, 26mp3an1 1444 . . . . . . . . 9 ((𝑦𝐽𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
2827adantll 712 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
299, 20, 21, 22, 24, 28, 6uvcvv0 20936 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → ((𝑈𝑦)‘𝑥) = 0 )
3019, 29suppss 7862 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → ((𝑈𝑦) supp 0 ) ⊆ 𝐽)
31 oveq1 7165 . . . . . . . 8 (𝑥 = (𝑈𝑦) → (𝑥 supp 0 ) = ((𝑈𝑦) supp 0 ))
3231sseq1d 4000 . . . . . . 7 (𝑥 = (𝑈𝑦) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3332, 7elrab2 3685 . . . . . 6 ((𝑈𝑦) ∈ 𝐶 ↔ ((𝑈𝑦) ∈ 𝐵 ∧ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3415, 30, 33sylanbrc 585 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐶)
3534ralrimiva 3184 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶)
3611ffund 6520 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → Fun 𝑈)
3711fdmd 6525 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → dom 𝑈 = 𝐼)
3813, 37sseqtrrd 4010 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽 ⊆ dom 𝑈)
39 funimass4 6732 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
4036, 38, 39syl2anc 586 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
4135, 40mpbird 259 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐶)
42 frlmsslsp.k . . . 4 𝐾 = (LSpan‘𝑌)
434, 42lspssp 19762 . . 3 ((𝑌 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝑌) ∧ (𝑈𝐽) ⊆ 𝐶) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
443, 8, 41, 43syl3anc 1367 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
45 simpl1 1187 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑅 ∈ Ring)
46 simpl2 1188 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝐼𝑉)
477ssrab3 4059 . . . . . 6 𝐶𝐵
4847a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝐵)
4948sselda 3969 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦𝐵)
50 eqid 2823 . . . . 5 ( ·𝑠𝑌) = ( ·𝑠𝑌)
519, 1, 5, 50uvcresum 20939 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝑦𝐵) → 𝑦 = (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)))
5245, 46, 49, 51syl3anc 1367 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 = (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)))
53 eqid 2823 . . . 4 (0g𝑌) = (0g𝑌)
54 lmodabl 19683 . . . . . 6 (𝑌 ∈ LMod → 𝑌 ∈ Abel)
553, 54syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ Abel)
5655adantr 483 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑌 ∈ Abel)
57 imassrn 5942 . . . . . . . 8 (𝑈𝐽) ⊆ ran 𝑈
5811frnd 6523 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ran 𝑈𝐵)
5957, 58sstrid 3980 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐵)
605, 4, 42lspcl 19750 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
613, 59, 60syl2anc 586 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
624lsssubg 19731 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
633, 61, 62syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
6463adantr 483 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
651, 17, 5frlmbasf 20906 . . . . . . . . 9 ((𝐼𝑉𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
66653ad2antl2 1182 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
6766ffnd 6517 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦 Fn 𝐼)
6811ffnd 6517 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈 Fn 𝐼)
6968adantr 483 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈 Fn 𝐼)
70 simpl2 1188 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝐼𝑉)
71 inidm 4197 . . . . . . 7 (𝐼𝐼) = 𝐼
7267, 69, 70, 70, 71offn 7422 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
7349, 72syldan 593 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
7449, 67syldan 593 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
7574adantrr 715 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑦 Fn 𝐼)
7668adantr 483 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑈 Fn 𝐼)
77 simpl2 1188 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝐼𝑉)
78 simprr 771 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑧𝐼)
79 fnfvof 7425 . . . . . . . . 9 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
8075, 76, 77, 78, 79syl22anc 836 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
813adantr 483 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑌 ∈ LMod)
8261adantr 483 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
8347sseli 3965 . . . . . . . . . . . . . . . 16 (𝑦𝐶𝑦𝐵)
8483, 66sylan2 594 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦:𝐼⟶(Base‘𝑅))
8584adantrr 715 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑦:𝐼⟶(Base‘𝑅))
8613sselda 3969 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → 𝑧𝐼)
8786adantrl 714 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑧𝐼)
8885, 87ffvelrnd 6854 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘𝑅))
891frlmsca 20899 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝑌))
90893adant3 1128 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑅 = (Scalar‘𝑌))
9190fveq2d 6676 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9291adantr 483 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9388, 92eleqtrd 2917 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)))
945, 42lspssid 19759 . . . . . . . . . . . . . . 15 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
953, 59, 94syl2anc 586 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
9695adantr 483 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
97 funfvima2 6995 . . . . . . . . . . . . . . . 16 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
9836, 38, 97syl2anc 586 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
9998imp 409 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → (𝑈𝑧) ∈ (𝑈𝐽))
10099adantrl 714 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝑈𝐽))
10196, 100sseldd 3970 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))
102 eqid 2823 . . . . . . . . . . . . 13 (Scalar‘𝑌) = (Scalar‘𝑌)
103 eqid 2823 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
104102, 50, 103, 4lssvscl 19729 . . . . . . . . . . . 12 (((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) ∧ ((𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
10581, 82, 93, 101, 104syl22anc 836 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
106105anassrs 470 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
107106adantlrr 719 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
108 id 22 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
109108adantrr 715 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
110109adantr 483 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
111 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧𝐼)
112 simpr 487 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ¬ 𝑧𝐽)
113111, 112eldifd 3949 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧 ∈ (𝐼𝐽))
114 oveq1 7165 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 supp 0 ) = (𝑦 supp 0 ))
115114sseq1d 4000 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑦 supp 0 ) ⊆ 𝐽))
116115, 7elrab2 3685 . . . . . . . . . . . . . . . . 17 (𝑦𝐶 ↔ (𝑦𝐵 ∧ (𝑦 supp 0 ) ⊆ 𝐽))
117116simprbi 499 . . . . . . . . . . . . . . . 16 (𝑦𝐶 → (𝑦 supp 0 ) ⊆ 𝐽)
118117adantl 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ⊆ 𝐽)
1196fvexi 6686 . . . . . . . . . . . . . . . 16 0 ∈ V
120119a1i 11 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 0 ∈ V)
12184, 118, 46, 120suppssr 7863 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧 ∈ (𝐼𝐽)) → (𝑦𝑧) = 0 )
122110, 113, 121syl2anc 586 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = 0 )
12390fveq2d 6676 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (0g𝑅) = (0g‘(Scalar‘𝑌)))
1246, 123syl5eq 2870 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 0 = (0g‘(Scalar‘𝑌)))
125124ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 0 = (0g‘(Scalar‘𝑌)))
126122, 125eqtrd 2858 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = (0g‘(Scalar‘𝑌)))
127126oveq1d 7173 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)))
1283ad2antrr 724 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑌 ∈ LMod)
12911ffvelrnda 6853 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐼) → (𝑈𝑧) ∈ 𝐵)
130129adantrl 714 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → (𝑈𝑧) ∈ 𝐵)
131130adantr 483 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑈𝑧) ∈ 𝐵)
132 eqid 2823 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1335, 102, 50, 132, 53lmod0vs 19669 . . . . . . . . . . . 12 ((𝑌 ∈ LMod ∧ (𝑈𝑧) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
134128, 131, 133syl2anc 586 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
135127, 134eqtrd 2858 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
13661ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
13753, 4lss0cl 19720 . . . . . . . . . . 11 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
138128, 136, 137syl2anc 586 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
139135, 138eqeltrd 2915 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
140107, 139pm2.61dan 811 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
14180, 140eqeltrd 2915 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
142141expr 459 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑧𝐼 → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
143142ralrimiv 3183 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ∀𝑧𝐼 ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
144 ffnfv 6884 . . . . 5 ((𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 ∧ ∀𝑧𝐼 ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
14573, 143, 144sylanbrc 585 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)))
1461, 6, 5frlmbasfsupp 20904 . . . . . . . 8 ((𝐼𝑉𝑦𝐵) → 𝑦 finSupp 0 )
147146fsuppimpd 8842 . . . . . . 7 ((𝐼𝑉𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
14846, 49, 147syl2anc 586 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ∈ Fin)
149 dffn2 6518 . . . . . . . . 9 ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 ↔ (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶V)
15072, 149sylib 220 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶V)
15167adantr 483 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑦 Fn 𝐼)
15268ad2antrr 724 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑈 Fn 𝐼)
153 simpll2 1209 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝐼𝑉)
154 eldifi 4105 . . . . . . . . . . 11 (𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 )) → 𝑥𝐼)
155154adantl 484 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑥𝐼)
156 fnfvof 7425 . . . . . . . . . 10 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
157151, 152, 153, 155, 156syl22anc 836 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
158 ssidd 3992 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
159119a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 0 ∈ V)
16066, 158, 70, 159suppssr 7863 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = 0 )
161124ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 0 = (0g‘(Scalar‘𝑌)))
162160, 161eqtrd 2858 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = (0g‘(Scalar‘𝑌)))
163162oveq1d 7173 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)))
1643ad2antrr 724 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑌 ∈ LMod)
16511adantr 483 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈:𝐼𝐵)
166 ffvelrn 6851 . . . . . . . . . . 11 ((𝑈:𝐼𝐵𝑥𝐼) → (𝑈𝑥) ∈ 𝐵)
167165, 154, 166syl2an 597 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑈𝑥) ∈ 𝐵)
1685, 102, 50, 132, 53lmod0vs 19669 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ (𝑈𝑥) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
169164, 167, 168syl2anc 586 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
170157, 163, 1693eqtrd 2862 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = (0g𝑌))
171150, 170suppss 7862 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
17249, 171syldan 593 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
173148, 172ssfid 8743 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin)
174 simp2 1133 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐼𝑉)
1751, 17, 5frlmbasmap 20905 . . . . . . . . . 10 ((𝐼𝑉𝑦𝐵) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼))
176174, 83, 175syl2an 597 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼))
177 elmapfn 8431 . . . . . . . . 9 (𝑦 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑦 Fn 𝐼)
178176, 177syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
17911adantr 483 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈:𝐼𝐵)
180179ffnd 6517 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈 Fn 𝐼)
181178, 180, 46, 46, 71offn 7422 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
182 fnfun 6455 . . . . . . 7 ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 → Fun (𝑦f ( ·𝑠𝑌)𝑈))
183181, 182syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → Fun (𝑦f ( ·𝑠𝑌)𝑈))
184 ovexd 7193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) ∈ V)
185 fvexd 6687 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (0g𝑌) ∈ V)
186 funisfsupp 8840 . . . . . 6 ((Fun (𝑦f ( ·𝑠𝑌)𝑈) ∧ (𝑦f ( ·𝑠𝑌)𝑈) ∈ V ∧ (0g𝑌) ∈ V) → ((𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
187183, 184, 185, 186syl3anc 1367 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
188173, 187mpbird 259 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌))
18953, 56, 46, 64, 145, 188gsumsubgcl 19042 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)) ∈ (𝐾‘(𝑈𝐽)))
19052, 189eqeltrd 2915 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ (𝐾‘(𝑈𝐽)))
19144, 190eqelssd 3990 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  cin 3937  wss 3938  c0 4293   class class class wbr 5068  dom cdm 5557  ran crn 5558  cima 5560  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409   supp csupp 7832  m cmap 8408  Fincfn 8511   finSupp cfsupp 8835  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715   Σg cgsu 16716  SubGrpcsubg 18275  Abelcabl 18909  Ringcrg 19299  LModclmod 19636  LSubSpclss 19705  LSpanclspn 19745   freeLMod cfrlm 20892   unitVec cuvc 20928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lmhm 19796  df-sra 19946  df-rgmod 19947  df-dsmm 20878  df-frlm 20893  df-uvc 20929
This theorem is referenced by:  frlmlbs  20943
  Copyright terms: Public domain W3C validator