MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslsp Structured version   Visualization version   GIF version

Theorem frlmsslsp 20913
Description: A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmsslsp.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslsp.u 𝑈 = (𝑅 unitVec 𝐼)
frlmsslsp.k 𝐾 = (LSpan‘𝑌)
frlmsslsp.b 𝐵 = (Base‘𝑌)
frlmsslsp.z 0 = (0g𝑅)
frlmsslsp.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
Assertion
Ref Expression
frlmsslsp ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑈   𝑥,𝐵   𝑥, 0   𝑥,𝑅   𝑥,𝐼   𝑥,𝑉   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslsp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmsslsp.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
21frlmlmod 20866 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ LMod)
323adant3 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ LMod)
4 eqid 2738 . . . 4 (LSubSp‘𝑌) = (LSubSp‘𝑌)
5 frlmsslsp.b . . . 4 𝐵 = (Base‘𝑌)
6 frlmsslsp.z . . . 4 0 = (0g𝑅)
7 frlmsslsp.c . . . 4 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
81, 4, 5, 6, 7frlmsslss2 20892 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 ∈ (LSubSp‘𝑌))
9 frlmsslsp.u . . . . . . . . . 10 𝑈 = (𝑅 unitVec 𝐼)
109, 1, 5uvcff 20908 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
11103adant3 1130 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈:𝐼𝐵)
1211adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑈:𝐼𝐵)
13 simp3 1136 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽𝐼)
1413sselda 3917 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑦𝐼)
1512, 14ffvelrnd 6944 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐵)
16 simpl2 1190 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝐼𝑉)
17 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
181, 17, 5frlmbasf 20877 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑈𝑦) ∈ 𝐵) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
1916, 15, 18syl2anc 583 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
20 simpll1 1210 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑅 ∈ Ring)
21 simpll2 1211 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝐼𝑉)
2214adantr 480 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝐼)
23 eldifi 4057 . . . . . . . . 9 (𝑥 ∈ (𝐼𝐽) → 𝑥𝐼)
2423adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑥𝐼)
25 elneeldif 3897 . . . . . . . . 9 ((𝑦𝐽𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
2625adantll 710 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
279, 20, 21, 22, 24, 26, 6uvcvv0 20907 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → ((𝑈𝑦)‘𝑥) = 0 )
2819, 27suppss 7981 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → ((𝑈𝑦) supp 0 ) ⊆ 𝐽)
29 oveq1 7262 . . . . . . . 8 (𝑥 = (𝑈𝑦) → (𝑥 supp 0 ) = ((𝑈𝑦) supp 0 ))
3029sseq1d 3948 . . . . . . 7 (𝑥 = (𝑈𝑦) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3130, 7elrab2 3620 . . . . . 6 ((𝑈𝑦) ∈ 𝐶 ↔ ((𝑈𝑦) ∈ 𝐵 ∧ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3215, 28, 31sylanbrc 582 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐶)
3332ralrimiva 3107 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶)
3411ffund 6588 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → Fun 𝑈)
3511fdmd 6595 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → dom 𝑈 = 𝐼)
3613, 35sseqtrrd 3958 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽 ⊆ dom 𝑈)
37 funimass4 6816 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
3834, 36, 37syl2anc 583 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
3933, 38mpbird 256 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐶)
40 frlmsslsp.k . . . 4 𝐾 = (LSpan‘𝑌)
414, 40lspssp 20165 . . 3 ((𝑌 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝑌) ∧ (𝑈𝐽) ⊆ 𝐶) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
423, 8, 39, 41syl3anc 1369 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
43 simpl1 1189 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑅 ∈ Ring)
44 simpl2 1190 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝐼𝑉)
457ssrab3 4011 . . . . . 6 𝐶𝐵
4645a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝐵)
4746sselda 3917 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦𝐵)
48 eqid 2738 . . . . 5 ( ·𝑠𝑌) = ( ·𝑠𝑌)
499, 1, 5, 48uvcresum 20910 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝑦𝐵) → 𝑦 = (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)))
5043, 44, 47, 49syl3anc 1369 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 = (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)))
51 eqid 2738 . . . 4 (0g𝑌) = (0g𝑌)
52 lmodabl 20085 . . . . . 6 (𝑌 ∈ LMod → 𝑌 ∈ Abel)
533, 52syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ Abel)
5453adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑌 ∈ Abel)
55 imassrn 5969 . . . . . . . 8 (𝑈𝐽) ⊆ ran 𝑈
5611frnd 6592 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ran 𝑈𝐵)
5755, 56sstrid 3928 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐵)
585, 4, 40lspcl 20153 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
593, 57, 58syl2anc 583 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
604lsssubg 20134 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
613, 59, 60syl2anc 583 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
6261adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
631, 17, 5frlmbasf 20877 . . . . . . . . 9 ((𝐼𝑉𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
64633ad2antl2 1184 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
6564ffnd 6585 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦 Fn 𝐼)
6611ffnd 6585 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈 Fn 𝐼)
6766adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈 Fn 𝐼)
68 simpl2 1190 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝐼𝑉)
69 inidm 4149 . . . . . . 7 (𝐼𝐼) = 𝐼
7065, 67, 68, 68, 69offn 7524 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
7147, 70syldan 590 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
7247, 65syldan 590 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
7372adantrr 713 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑦 Fn 𝐼)
7466adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑈 Fn 𝐼)
75 simpl2 1190 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝐼𝑉)
76 simprr 769 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑧𝐼)
77 fnfvof 7528 . . . . . . . . 9 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
7873, 74, 75, 76, 77syl22anc 835 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
793adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑌 ∈ LMod)
8059adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
8145sseli 3913 . . . . . . . . . . . . . . . 16 (𝑦𝐶𝑦𝐵)
8281, 64sylan2 592 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦:𝐼⟶(Base‘𝑅))
8382adantrr 713 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑦:𝐼⟶(Base‘𝑅))
8413sselda 3917 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → 𝑧𝐼)
8584adantrl 712 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑧𝐼)
8683, 85ffvelrnd 6944 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘𝑅))
871frlmsca 20870 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝑌))
88873adant3 1130 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑅 = (Scalar‘𝑌))
8988fveq2d 6760 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9089adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9186, 90eleqtrd 2841 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)))
925, 40lspssid 20162 . . . . . . . . . . . . . . 15 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
933, 57, 92syl2anc 583 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
9493adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
95 funfvima2 7089 . . . . . . . . . . . . . . . 16 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
9634, 36, 95syl2anc 583 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
9796imp 406 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → (𝑈𝑧) ∈ (𝑈𝐽))
9897adantrl 712 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝑈𝐽))
9994, 98sseldd 3918 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))
100 eqid 2738 . . . . . . . . . . . . 13 (Scalar‘𝑌) = (Scalar‘𝑌)
101 eqid 2738 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
102100, 48, 101, 4lssvscl 20132 . . . . . . . . . . . 12 (((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) ∧ ((𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
10379, 80, 91, 99, 102syl22anc 835 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
104103anassrs 467 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
105104adantlrr 717 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
106 id 22 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
107106adantrr 713 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
108107adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
109 simplrr 774 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧𝐼)
110 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ¬ 𝑧𝐽)
111109, 110eldifd 3894 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧 ∈ (𝐼𝐽))
112 oveq1 7262 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 supp 0 ) = (𝑦 supp 0 ))
113112sseq1d 3948 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑦 supp 0 ) ⊆ 𝐽))
114113, 7elrab2 3620 . . . . . . . . . . . . . . . . 17 (𝑦𝐶 ↔ (𝑦𝐵 ∧ (𝑦 supp 0 ) ⊆ 𝐽))
115114simprbi 496 . . . . . . . . . . . . . . . 16 (𝑦𝐶 → (𝑦 supp 0 ) ⊆ 𝐽)
116115adantl 481 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ⊆ 𝐽)
1176fvexi 6770 . . . . . . . . . . . . . . . 16 0 ∈ V
118117a1i 11 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 0 ∈ V)
11982, 116, 44, 118suppssr 7983 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧 ∈ (𝐼𝐽)) → (𝑦𝑧) = 0 )
120108, 111, 119syl2anc 583 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = 0 )
12188fveq2d 6760 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (0g𝑅) = (0g‘(Scalar‘𝑌)))
1226, 121eqtrid 2790 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 0 = (0g‘(Scalar‘𝑌)))
123122ad2antrr 722 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 0 = (0g‘(Scalar‘𝑌)))
124120, 123eqtrd 2778 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = (0g‘(Scalar‘𝑌)))
125124oveq1d 7270 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)))
1263ad2antrr 722 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑌 ∈ LMod)
12711ffvelrnda 6943 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐼) → (𝑈𝑧) ∈ 𝐵)
128127adantrl 712 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → (𝑈𝑧) ∈ 𝐵)
129128adantr 480 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑈𝑧) ∈ 𝐵)
130 eqid 2738 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1315, 100, 48, 130, 51lmod0vs 20071 . . . . . . . . . . . 12 ((𝑌 ∈ LMod ∧ (𝑈𝑧) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
132126, 129, 131syl2anc 583 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
133125, 132eqtrd 2778 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
13459ad2antrr 722 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
13551, 4lss0cl 20123 . . . . . . . . . . 11 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
136126, 134, 135syl2anc 583 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
137133, 136eqeltrd 2839 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
138105, 137pm2.61dan 809 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
13978, 138eqeltrd 2839 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
140139expr 456 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑧𝐼 → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
141140ralrimiv 3106 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ∀𝑧𝐼 ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
142 ffnfv 6974 . . . . 5 ((𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 ∧ ∀𝑧𝐼 ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
14371, 141, 142sylanbrc 582 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)))
1441, 6, 5frlmbasfsupp 20875 . . . . . . . 8 ((𝐼𝑉𝑦𝐵) → 𝑦 finSupp 0 )
145144fsuppimpd 9065 . . . . . . 7 ((𝐼𝑉𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
14644, 47, 145syl2anc 583 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ∈ Fin)
147 dffn2 6586 . . . . . . . . 9 ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 ↔ (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶V)
14870, 147sylib 217 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶V)
14965adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑦 Fn 𝐼)
15066ad2antrr 722 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑈 Fn 𝐼)
151 simpll2 1211 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝐼𝑉)
152 eldifi 4057 . . . . . . . . . . 11 (𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 )) → 𝑥𝐼)
153152adantl 481 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑥𝐼)
154 fnfvof 7528 . . . . . . . . . 10 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
155149, 150, 151, 153, 154syl22anc 835 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
156 ssidd 3940 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
157117a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 0 ∈ V)
15864, 156, 68, 157suppssr 7983 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = 0 )
159122ad2antrr 722 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 0 = (0g‘(Scalar‘𝑌)))
160158, 159eqtrd 2778 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = (0g‘(Scalar‘𝑌)))
161160oveq1d 7270 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)))
1623ad2antrr 722 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑌 ∈ LMod)
16311adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈:𝐼𝐵)
164 ffvelrn 6941 . . . . . . . . . . 11 ((𝑈:𝐼𝐵𝑥𝐼) → (𝑈𝑥) ∈ 𝐵)
165163, 152, 164syl2an 595 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑈𝑥) ∈ 𝐵)
1665, 100, 48, 130, 51lmod0vs 20071 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ (𝑈𝑥) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
167162, 165, 166syl2anc 583 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
168155, 161, 1673eqtrd 2782 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = (0g𝑌))
169148, 168suppss 7981 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
17047, 169syldan 590 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
171146, 170ssfid 8971 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin)
172 simp2 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐼𝑉)
1731, 17, 5frlmbasmap 20876 . . . . . . . . 9 ((𝐼𝑉𝑦𝐵) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼))
174172, 81, 173syl2an 595 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼))
175 elmapfn 8611 . . . . . . . 8 (𝑦 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑦 Fn 𝐼)
176174, 175syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
17711adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈:𝐼𝐵)
178177ffnd 6585 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈 Fn 𝐼)
179176, 178, 44, 44offun 7525 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → Fun (𝑦f ( ·𝑠𝑌)𝑈))
180 ovexd 7290 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) ∈ V)
181 fvexd 6771 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (0g𝑌) ∈ V)
182 funisfsupp 9063 . . . . . 6 ((Fun (𝑦f ( ·𝑠𝑌)𝑈) ∧ (𝑦f ( ·𝑠𝑌)𝑈) ∈ V ∧ (0g𝑌) ∈ V) → ((𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
183179, 180, 181, 182syl3anc 1369 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
184171, 183mpbird 256 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌))
18551, 54, 44, 62, 143, 184gsumsubgcl 19436 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)) ∈ (𝐾‘(𝑈𝐽)))
18650, 185eqeltrd 2839 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ (𝐾‘(𝑈𝐽)))
18742, 186eqelssd 3938 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  wss 3883   class class class wbr 5070  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  SubGrpcsubg 18664  Abelcabl 19302  Ringcrg 19698  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148   freeLMod cfrlm 20863   unitVec cuvc 20899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-uvc 20900
This theorem is referenced by:  frlmlbs  20914
  Copyright terms: Public domain W3C validator