| Step | Hyp | Ref
| Expression |
| 1 | | frlmsslsp.y |
. . . . 5
⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| 2 | 1 | frlmlmod 21769 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ LMod) |
| 3 | 2 | 3adant3 1133 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑌 ∈ LMod) |
| 4 | | eqid 2737 |
. . . 4
⊢
(LSubSp‘𝑌) =
(LSubSp‘𝑌) |
| 5 | | frlmsslsp.b |
. . . 4
⊢ 𝐵 = (Base‘𝑌) |
| 6 | | frlmsslsp.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
| 7 | | frlmsslsp.c |
. . . 4
⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} |
| 8 | 1, 4, 5, 6, 7 | frlmsslss2 21795 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ (LSubSp‘𝑌)) |
| 9 | | frlmsslsp.u |
. . . . . . . . . 10
⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| 10 | 9, 1, 5 | uvcff 21811 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑈:𝐼⟶𝐵) |
| 11 | 10 | 3adant3 1133 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑈:𝐼⟶𝐵) |
| 12 | 11 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑈:𝐼⟶𝐵) |
| 13 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ⊆ 𝐼) |
| 14 | 13 | sselda 3983 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐼) |
| 15 | 12, 14 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑈‘𝑦) ∈ 𝐵) |
| 16 | | simpl2 1193 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐼 ∈ 𝑉) |
| 17 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 18 | 1, 17, 5 | frlmbasf 21780 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑈‘𝑦) ∈ 𝐵) → (𝑈‘𝑦):𝐼⟶(Base‘𝑅)) |
| 19 | 16, 15, 18 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑈‘𝑦):𝐼⟶(Base‘𝑅)) |
| 20 | | simpll1 1213 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝑅 ∈ Ring) |
| 21 | | simpll2 1214 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝐼 ∈ 𝑉) |
| 22 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝑦 ∈ 𝐼) |
| 23 | | eldifi 4131 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐼 ∖ 𝐽) → 𝑥 ∈ 𝐼) |
| 24 | 23 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝑥 ∈ 𝐼) |
| 25 | | elneeldif 3965 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐽 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝑦 ≠ 𝑥) |
| 26 | 25 | adantll 714 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝑦 ≠ 𝑥) |
| 27 | 9, 20, 21, 22, 24, 26, 6 | uvcvv0 21810 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → ((𝑈‘𝑦)‘𝑥) = 0 ) |
| 28 | 19, 27 | suppss 8219 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) → ((𝑈‘𝑦) supp 0 ) ⊆ 𝐽) |
| 29 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑥 = (𝑈‘𝑦) → (𝑥 supp 0 ) = ((𝑈‘𝑦) supp 0 )) |
| 30 | 29 | sseq1d 4015 |
. . . . . . 7
⊢ (𝑥 = (𝑈‘𝑦) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈‘𝑦) supp 0 ) ⊆ 𝐽)) |
| 31 | 30, 7 | elrab2 3695 |
. . . . . 6
⊢ ((𝑈‘𝑦) ∈ 𝐶 ↔ ((𝑈‘𝑦) ∈ 𝐵 ∧ ((𝑈‘𝑦) supp 0 ) ⊆ 𝐽)) |
| 32 | 15, 28, 31 | sylanbrc 583 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑈‘𝑦) ∈ 𝐶) |
| 33 | 32 | ralrimiva 3146 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∀𝑦 ∈ 𝐽 (𝑈‘𝑦) ∈ 𝐶) |
| 34 | 11 | ffund 6740 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Fun 𝑈) |
| 35 | 11 | fdmd 6746 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → dom 𝑈 = 𝐼) |
| 36 | 13, 35 | sseqtrrd 4021 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐽 ⊆ dom 𝑈) |
| 37 | | funimass4 6973 |
. . . . 5
⊢ ((Fun
𝑈 ∧ 𝐽 ⊆ dom 𝑈) → ((𝑈 “ 𝐽) ⊆ 𝐶 ↔ ∀𝑦 ∈ 𝐽 (𝑈‘𝑦) ∈ 𝐶)) |
| 38 | 34, 36, 37 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ((𝑈 “ 𝐽) ⊆ 𝐶 ↔ ∀𝑦 ∈ 𝐽 (𝑈‘𝑦) ∈ 𝐶)) |
| 39 | 33, 38 | mpbird 257 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑈 “ 𝐽) ⊆ 𝐶) |
| 40 | | frlmsslsp.k |
. . . 4
⊢ 𝐾 = (LSpan‘𝑌) |
| 41 | 4, 40 | lspssp 20986 |
. . 3
⊢ ((𝑌 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝑌) ∧ (𝑈 “ 𝐽) ⊆ 𝐶) → (𝐾‘(𝑈 “ 𝐽)) ⊆ 𝐶) |
| 42 | 3, 8, 39, 41 | syl3anc 1373 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐾‘(𝑈 “ 𝐽)) ⊆ 𝐶) |
| 43 | | simpl1 1192 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑅 ∈ Ring) |
| 44 | | simpl2 1193 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝐼 ∈ 𝑉) |
| 45 | 7 | ssrab3 4082 |
. . . . . 6
⊢ 𝐶 ⊆ 𝐵 |
| 46 | 45 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ⊆ 𝐵) |
| 47 | 46 | sselda 3983 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ 𝐵) |
| 48 | | eqid 2737 |
. . . . 5
⊢ (
·𝑠 ‘𝑌) = ( ·𝑠
‘𝑌) |
| 49 | 9, 1, 5, 48 | uvcresum 21813 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝑦 ∈ 𝐵) → 𝑦 = (𝑌 Σg (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈))) |
| 50 | 43, 44, 47, 49 | syl3anc 1373 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑦 = (𝑌 Σg (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈))) |
| 51 | | eqid 2737 |
. . . 4
⊢
(0g‘𝑌) = (0g‘𝑌) |
| 52 | | lmodabl 20907 |
. . . . . 6
⊢ (𝑌 ∈ LMod → 𝑌 ∈ Abel) |
| 53 | 3, 52 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑌 ∈ Abel) |
| 54 | 53 | adantr 480 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑌 ∈ Abel) |
| 55 | | imassrn 6089 |
. . . . . . . 8
⊢ (𝑈 “ 𝐽) ⊆ ran 𝑈 |
| 56 | 11 | frnd 6744 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ran 𝑈 ⊆ 𝐵) |
| 57 | 55, 56 | sstrid 3995 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑈 “ 𝐽) ⊆ 𝐵) |
| 58 | 5, 4, 40 | lspcl 20974 |
. . . . . . 7
⊢ ((𝑌 ∈ LMod ∧ (𝑈 “ 𝐽) ⊆ 𝐵) → (𝐾‘(𝑈 “ 𝐽)) ∈ (LSubSp‘𝑌)) |
| 59 | 3, 57, 58 | syl2anc 584 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐾‘(𝑈 “ 𝐽)) ∈ (LSubSp‘𝑌)) |
| 60 | 4 | lsssubg 20955 |
. . . . . 6
⊢ ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈 “ 𝐽)) ∈ (LSubSp‘𝑌)) → (𝐾‘(𝑈 “ 𝐽)) ∈ (SubGrp‘𝑌)) |
| 61 | 3, 59, 60 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐾‘(𝑈 “ 𝐽)) ∈ (SubGrp‘𝑌)) |
| 62 | 61 | adantr 480 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝐾‘(𝑈 “ 𝐽)) ∈ (SubGrp‘𝑌)) |
| 63 | 1, 17, 5 | frlmbasf 21780 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐼⟶(Base‘𝑅)) |
| 64 | 63 | 3ad2antl2 1187 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐼⟶(Base‘𝑅)) |
| 65 | 64 | ffnd 6737 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → 𝑦 Fn 𝐼) |
| 66 | 11 | ffnd 6737 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑈 Fn 𝐼) |
| 67 | 66 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → 𝑈 Fn 𝐼) |
| 68 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → 𝐼 ∈ 𝑉) |
| 69 | | inidm 4227 |
. . . . . . 7
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 70 | 65, 67, 68, 68, 69 | offn 7710 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) Fn 𝐼) |
| 71 | 47, 70 | syldan 591 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) Fn 𝐼) |
| 72 | 47, 65 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑦 Fn 𝐼) |
| 73 | 72 | adantrr 717 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → 𝑦 Fn 𝐼) |
| 74 | 66 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → 𝑈 Fn 𝐼) |
| 75 | | simpl2 1193 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → 𝐼 ∈ 𝑉) |
| 76 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → 𝑧 ∈ 𝐼) |
| 77 | | fnfvof 7714 |
. . . . . . . . 9
⊢ (((𝑦 Fn 𝐼 ∧ 𝑈 Fn 𝐼) ∧ (𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝐼)) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑧) = ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧))) |
| 78 | 73, 74, 75, 76, 77 | syl22anc 839 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑧) = ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧))) |
| 79 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → 𝑌 ∈ LMod) |
| 80 | 59 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → (𝐾‘(𝑈 “ 𝐽)) ∈ (LSubSp‘𝑌)) |
| 81 | 45 | sseli 3979 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵) |
| 82 | 81, 64 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑦:𝐼⟶(Base‘𝑅)) |
| 83 | 82 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → 𝑦:𝐼⟶(Base‘𝑅)) |
| 84 | 13 | sselda 3983 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑧 ∈ 𝐽) → 𝑧 ∈ 𝐼) |
| 85 | 84 | adantrl 716 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → 𝑧 ∈ 𝐼) |
| 86 | 83, 85 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → (𝑦‘𝑧) ∈ (Base‘𝑅)) |
| 87 | 1 | frlmsca 21773 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 = (Scalar‘𝑌)) |
| 88 | 87 | 3adant3 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑅 = (Scalar‘𝑌)) |
| 89 | 88 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
| 90 | 89 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
| 91 | 86, 90 | eleqtrd 2843 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → (𝑦‘𝑧) ∈ (Base‘(Scalar‘𝑌))) |
| 92 | 5, 40 | lspssid 20983 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌 ∈ LMod ∧ (𝑈 “ 𝐽) ⊆ 𝐵) → (𝑈 “ 𝐽) ⊆ (𝐾‘(𝑈 “ 𝐽))) |
| 93 | 3, 57, 92 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑈 “ 𝐽) ⊆ (𝐾‘(𝑈 “ 𝐽))) |
| 94 | 93 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → (𝑈 “ 𝐽) ⊆ (𝐾‘(𝑈 “ 𝐽))) |
| 95 | | funfvima2 7251 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑈 ∧ 𝐽 ⊆ dom 𝑈) → (𝑧 ∈ 𝐽 → (𝑈‘𝑧) ∈ (𝑈 “ 𝐽))) |
| 96 | 34, 36, 95 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝑧 ∈ 𝐽 → (𝑈‘𝑧) ∈ (𝑈 “ 𝐽))) |
| 97 | 96 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑧 ∈ 𝐽) → (𝑈‘𝑧) ∈ (𝑈 “ 𝐽)) |
| 98 | 97 | adantrl 716 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → (𝑈‘𝑧) ∈ (𝑈 “ 𝐽)) |
| 99 | 94, 98 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → (𝑈‘𝑧) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 100 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
| 101 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
| 102 | 100, 48, 101, 4 | lssvscl 20953 |
. . . . . . . . . . . 12
⊢ (((𝑌 ∈ LMod ∧ (𝐾‘(𝑈 “ 𝐽)) ∈ (LSubSp‘𝑌)) ∧ ((𝑦‘𝑧) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈‘𝑧) ∈ (𝐾‘(𝑈 “ 𝐽)))) → ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧)) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 103 | 79, 80, 91, 99, 102 | syl22anc 839 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐽)) → ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧)) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 104 | 103 | anassrs 467 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 ∈ 𝐽) → ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧)) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 105 | 104 | adantlrr 721 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ 𝑧 ∈ 𝐽) → ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧)) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 106 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶)) |
| 107 | 106 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶)) |
| 108 | 107 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶)) |
| 109 | | simplrr 778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → 𝑧 ∈ 𝐼) |
| 110 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → ¬ 𝑧 ∈ 𝐽) |
| 111 | 109, 110 | eldifd 3962 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → 𝑧 ∈ (𝐼 ∖ 𝐽)) |
| 112 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝑥 supp 0 ) = (𝑦 supp 0 )) |
| 113 | 112 | sseq1d 4015 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑦 supp 0 ) ⊆ 𝐽)) |
| 114 | 113, 7 | elrab2 3695 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐶 ↔ (𝑦 ∈ 𝐵 ∧ (𝑦 supp 0 ) ⊆ 𝐽)) |
| 115 | 114 | simprbi 496 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐶 → (𝑦 supp 0 ) ⊆ 𝐽) |
| 116 | 115 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝑦 supp 0 ) ⊆ 𝐽) |
| 117 | 6 | fvexi 6920 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
| 118 | 117 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 0 ∈ V) |
| 119 | 82, 116, 44, 118 | suppssr 8220 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 ∈ (𝐼 ∖ 𝐽)) → (𝑦‘𝑧) = 0 ) |
| 120 | 108, 111,
119 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → (𝑦‘𝑧) = 0 ) |
| 121 | 88 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (0g‘𝑅) =
(0g‘(Scalar‘𝑌))) |
| 122 | 6, 121 | eqtrid 2789 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 0 =
(0g‘(Scalar‘𝑌))) |
| 123 | 122 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → 0 =
(0g‘(Scalar‘𝑌))) |
| 124 | 120, 123 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → (𝑦‘𝑧) = (0g‘(Scalar‘𝑌))) |
| 125 | 124 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧)) =
((0g‘(Scalar‘𝑌))( ·𝑠
‘𝑌)(𝑈‘𝑧))) |
| 126 | 3 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → 𝑌 ∈ LMod) |
| 127 | 11 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑧 ∈ 𝐼) → (𝑈‘𝑧) ∈ 𝐵) |
| 128 | 127 | adantrl 716 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → (𝑈‘𝑧) ∈ 𝐵) |
| 129 | 128 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → (𝑈‘𝑧) ∈ 𝐵) |
| 130 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(0g‘(Scalar‘𝑌)) =
(0g‘(Scalar‘𝑌)) |
| 131 | 5, 100, 48, 130, 51 | lmod0vs 20893 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ LMod ∧ (𝑈‘𝑧) ∈ 𝐵) →
((0g‘(Scalar‘𝑌))( ·𝑠
‘𝑌)(𝑈‘𝑧)) = (0g‘𝑌)) |
| 132 | 126, 129,
131 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) →
((0g‘(Scalar‘𝑌))( ·𝑠
‘𝑌)(𝑈‘𝑧)) = (0g‘𝑌)) |
| 133 | 125, 132 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧)) = (0g‘𝑌)) |
| 134 | 59 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → (𝐾‘(𝑈 “ 𝐽)) ∈ (LSubSp‘𝑌)) |
| 135 | 51, 4 | lss0cl 20945 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈 “ 𝐽)) ∈ (LSubSp‘𝑌)) → (0g‘𝑌) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 136 | 126, 134,
135 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → (0g‘𝑌) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 137 | 133, 136 | eqeltrd 2841 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) ∧ ¬ 𝑧 ∈ 𝐽) → ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧)) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 138 | 105, 137 | pm2.61dan 813 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → ((𝑦‘𝑧)( ·𝑠
‘𝑌)(𝑈‘𝑧)) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 139 | 78, 138 | eqeltrd 2841 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐼)) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 140 | 139 | expr 456 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝑧 ∈ 𝐼 → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈 “ 𝐽)))) |
| 141 | 140 | ralrimiv 3145 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → ∀𝑧 ∈ 𝐼 ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 142 | | ffnfv 7139 |
. . . . 5
⊢ ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈):𝐼⟶(𝐾‘(𝑈 “ 𝐽)) ↔ ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) Fn 𝐼 ∧ ∀𝑧 ∈ 𝐼 ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈 “ 𝐽)))) |
| 143 | 71, 141, 142 | sylanbrc 583 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈):𝐼⟶(𝐾‘(𝑈 “ 𝐽))) |
| 144 | 1, 6, 5 | frlmbasfsupp 21778 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦 ∈ 𝐵) → 𝑦 finSupp 0 ) |
| 145 | 144 | fsuppimpd 9409 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ∈
Fin) |
| 146 | 44, 47, 145 | syl2anc 584 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝑦 supp 0 ) ∈
Fin) |
| 147 | | dffn2 6738 |
. . . . . . . . 9
⊢ ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) Fn 𝐼 ↔ (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈):𝐼⟶V) |
| 148 | 70, 147 | sylib 218 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈):𝐼⟶V) |
| 149 | 65 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑦 Fn 𝐼) |
| 150 | 66 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑈 Fn 𝐼) |
| 151 | | simpll2 1214 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝐼 ∈ 𝑉) |
| 152 | | eldifi 4131 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 )) → 𝑥 ∈ 𝐼) |
| 153 | 152 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑥 ∈ 𝐼) |
| 154 | | fnfvof 7714 |
. . . . . . . . . 10
⊢ (((𝑦 Fn 𝐼 ∧ 𝑈 Fn 𝐼) ∧ (𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼)) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑥) = ((𝑦‘𝑥)( ·𝑠
‘𝑌)(𝑈‘𝑥))) |
| 155 | 149, 150,
151, 153, 154 | syl22anc 839 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑥) = ((𝑦‘𝑥)( ·𝑠
‘𝑌)(𝑈‘𝑥))) |
| 156 | | ssidd 4007 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 )) |
| 157 | 117 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → 0 ∈ V) |
| 158 | 64, 156, 68, 157 | suppssr 8220 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦‘𝑥) = 0 ) |
| 159 | 122 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 0 =
(0g‘(Scalar‘𝑌))) |
| 160 | 158, 159 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦‘𝑥) = (0g‘(Scalar‘𝑌))) |
| 161 | 160 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦‘𝑥)( ·𝑠
‘𝑌)(𝑈‘𝑥)) =
((0g‘(Scalar‘𝑌))( ·𝑠
‘𝑌)(𝑈‘𝑥))) |
| 162 | 3 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑌 ∈ LMod) |
| 163 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → 𝑈:𝐼⟶𝐵) |
| 164 | | ffvelcdm 7101 |
. . . . . . . . . . 11
⊢ ((𝑈:𝐼⟶𝐵 ∧ 𝑥 ∈ 𝐼) → (𝑈‘𝑥) ∈ 𝐵) |
| 165 | 163, 152,
164 | syl2an 596 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑈‘𝑥) ∈ 𝐵) |
| 166 | 5, 100, 48, 130, 51 | lmod0vs 20893 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ LMod ∧ (𝑈‘𝑥) ∈ 𝐵) →
((0g‘(Scalar‘𝑌))( ·𝑠
‘𝑌)(𝑈‘𝑥)) = (0g‘𝑌)) |
| 167 | 162, 165,
166 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) →
((0g‘(Scalar‘𝑌))( ·𝑠
‘𝑌)(𝑈‘𝑥)) = (0g‘𝑌)) |
| 168 | 155, 161,
167 | 3eqtrd 2781 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)‘𝑥) = (0g‘𝑌)) |
| 169 | 148, 168 | suppss 8219 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐵) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) supp (0g‘𝑌)) ⊆ (𝑦 supp 0 )) |
| 170 | 47, 169 | syldan 591 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) supp (0g‘𝑌)) ⊆ (𝑦 supp 0 )) |
| 171 | 146, 170 | ssfid 9301 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) supp (0g‘𝑌)) ∈ Fin) |
| 172 | | simp2 1138 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐼 ∈ 𝑉) |
| 173 | 1, 17, 5 | frlmbasmap 21779 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼)) |
| 174 | 172, 81, 173 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼)) |
| 175 | | elmapfn 8905 |
. . . . . . . 8
⊢ (𝑦 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑦 Fn 𝐼) |
| 176 | 174, 175 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑦 Fn 𝐼) |
| 177 | 11 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑈:𝐼⟶𝐵) |
| 178 | 177 | ffnd 6737 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑈 Fn 𝐼) |
| 179 | 176, 178,
44, 44 | offun 7711 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → Fun (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)) |
| 180 | | ovexd 7466 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) ∈ V) |
| 181 | | fvexd 6921 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (0g‘𝑌) ∈ V) |
| 182 | | funisfsupp 9407 |
. . . . . 6
⊢ ((Fun
(𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) ∧ (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) ∈ V ∧ (0g‘𝑌) ∈ V) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) finSupp (0g‘𝑌) ↔ ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) supp (0g‘𝑌)) ∈ Fin)) |
| 183 | 179, 180,
181, 182 | syl3anc 1373 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) finSupp (0g‘𝑌) ↔ ((𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) supp (0g‘𝑌)) ∈ Fin)) |
| 184 | 171, 183 | mpbird 257 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈) finSupp (0g‘𝑌)) |
| 185 | 51, 54, 44, 62, 143, 184 | gsumsubgcl 19938 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → (𝑌 Σg (𝑦 ∘f (
·𝑠 ‘𝑌)𝑈)) ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 186 | 50, 185 | eqeltrd 2841 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ (𝐾‘(𝑈 “ 𝐽))) |
| 187 | 42, 186 | eqelssd 4005 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐾‘(𝑈 “ 𝐽)) = 𝐶) |