Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslsp Structured version   Visualization version   GIF version

Theorem frlmsslsp 20503
 Description: A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmsslsp.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslsp.u 𝑈 = (𝑅 unitVec 𝐼)
frlmsslsp.k 𝐾 = (LSpan‘𝑌)
frlmsslsp.b 𝐵 = (Base‘𝑌)
frlmsslsp.z 0 = (0g𝑅)
frlmsslsp.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
Assertion
Ref Expression
frlmsslsp ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑈   𝑥,𝐵   𝑥, 0   𝑥,𝑅   𝑥,𝐼   𝑥,𝑉   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslsp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmsslsp.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
21frlmlmod 20457 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ LMod)
323adant3 1168 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ LMod)
4 eqid 2826 . . . 4 (LSubSp‘𝑌) = (LSubSp‘𝑌)
5 frlmsslsp.b . . . 4 𝐵 = (Base‘𝑌)
6 frlmsslsp.z . . . 4 0 = (0g𝑅)
7 frlmsslsp.c . . . 4 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
81, 4, 5, 6, 7frlmsslss2 20482 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 ∈ (LSubSp‘𝑌))
9 frlmsslsp.u . . . . . . . . . 10 𝑈 = (𝑅 unitVec 𝐼)
109, 1, 5uvcff 20498 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
11103adant3 1168 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈:𝐼𝐵)
1211adantr 474 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑈:𝐼𝐵)
13 simp3 1174 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽𝐼)
1413sselda 3828 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑦𝐼)
1512, 14ffvelrnd 6610 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐵)
16 simpl2 1250 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝐼𝑉)
17 eqid 2826 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
181, 17, 5frlmbasf 20468 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑈𝑦) ∈ 𝐵) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
1916, 15, 18syl2anc 581 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
20 simpll1 1275 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑅 ∈ Ring)
21 simpll2 1277 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝐼𝑉)
2214adantr 474 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝐼)
23 eldifi 3960 . . . . . . . . 9 (𝑥 ∈ (𝐼𝐽) → 𝑥𝐼)
2423adantl 475 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑥𝐼)
25 disjdif 4264 . . . . . . . . . 10 (𝐽 ∩ (𝐼𝐽)) = ∅
26 disjne 4247 . . . . . . . . . 10 (((𝐽 ∩ (𝐼𝐽)) = ∅ ∧ 𝑦𝐽𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
2725, 26mp3an1 1578 . . . . . . . . 9 ((𝑦𝐽𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
2827adantll 707 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
299, 20, 21, 22, 24, 28, 6uvcvv0 20497 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → ((𝑈𝑦)‘𝑥) = 0 )
3019, 29suppss 7591 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → ((𝑈𝑦) supp 0 ) ⊆ 𝐽)
31 oveq1 6913 . . . . . . . 8 (𝑥 = (𝑈𝑦) → (𝑥 supp 0 ) = ((𝑈𝑦) supp 0 ))
3231sseq1d 3858 . . . . . . 7 (𝑥 = (𝑈𝑦) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3332, 7elrab2 3590 . . . . . 6 ((𝑈𝑦) ∈ 𝐶 ↔ ((𝑈𝑦) ∈ 𝐵 ∧ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3415, 30, 33sylanbrc 580 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐶)
3534ralrimiva 3176 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶)
3611ffnd 6280 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈 Fn 𝐼)
37 fnfun 6222 . . . . . 6 (𝑈 Fn 𝐼 → Fun 𝑈)
3836, 37syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → Fun 𝑈)
39 fndm 6224 . . . . . . 7 (𝑈 Fn 𝐼 → dom 𝑈 = 𝐼)
4036, 39syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → dom 𝑈 = 𝐼)
4113, 40sseqtr4d 3868 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽 ⊆ dom 𝑈)
42 funimass4 6495 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
4338, 41, 42syl2anc 581 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
4435, 43mpbird 249 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐶)
45 frlmsslsp.k . . . 4 𝐾 = (LSpan‘𝑌)
464, 45lspssp 19348 . . 3 ((𝑌 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝑌) ∧ (𝑈𝐽) ⊆ 𝐶) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
473, 8, 44, 46syl3anc 1496 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
48 simpl1 1248 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑅 ∈ Ring)
49 simpl2 1250 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝐼𝑉)
50 ssrab2 3913 . . . . . . 7 {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} ⊆ 𝐵
517, 50eqsstri 3861 . . . . . 6 𝐶𝐵
5251a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝐵)
5352sselda 3828 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦𝐵)
54 eqid 2826 . . . . 5 ( ·𝑠𝑌) = ( ·𝑠𝑌)
559, 1, 5, 54uvcresum 20500 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝑦𝐵) → 𝑦 = (𝑌 Σg (𝑦𝑓 ( ·𝑠𝑌)𝑈)))
5648, 49, 53, 55syl3anc 1496 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 = (𝑌 Σg (𝑦𝑓 ( ·𝑠𝑌)𝑈)))
57 eqid 2826 . . . 4 (0g𝑌) = (0g𝑌)
58 lmodabl 19267 . . . . . 6 (𝑌 ∈ LMod → 𝑌 ∈ Abel)
593, 58syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ Abel)
6059adantr 474 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑌 ∈ Abel)
61 imassrn 5719 . . . . . . . 8 (𝑈𝐽) ⊆ ran 𝑈
6211frnd 6286 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ran 𝑈𝐵)
6361, 62syl5ss 3839 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐵)
645, 4, 45lspcl 19336 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
653, 63, 64syl2anc 581 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
664lsssubg 19317 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
673, 65, 66syl2anc 581 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
6867adantr 474 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
691, 17, 5frlmbasf 20468 . . . . . . . . 9 ((𝐼𝑉𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
70693ad2antl2 1243 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
7170ffnd 6280 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦 Fn 𝐼)
7236adantr 474 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈 Fn 𝐼)
73 simpl2 1250 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝐼𝑉)
74 inidm 4048 . . . . . . 7 (𝐼𝐼) = 𝐼
7571, 72, 73, 73, 74offn 7169 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦𝑓 ( ·𝑠𝑌)𝑈) Fn 𝐼)
7653, 75syldan 587 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦𝑓 ( ·𝑠𝑌)𝑈) Fn 𝐼)
7753, 71syldan 587 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
7877adantrr 710 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑦 Fn 𝐼)
7936adantr 474 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑈 Fn 𝐼)
80 simpl2 1250 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝐼𝑉)
81 simprr 791 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑧𝐼)
82 fnfvof 7172 . . . . . . . . 9 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑧𝐼)) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
8378, 79, 80, 81, 82syl22anc 874 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
843adantr 474 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑌 ∈ LMod)
8565adantr 474 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
8651sseli 3824 . . . . . . . . . . . . . . . 16 (𝑦𝐶𝑦𝐵)
8786, 70sylan2 588 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦:𝐼⟶(Base‘𝑅))
8887adantrr 710 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑦:𝐼⟶(Base‘𝑅))
8913sselda 3828 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → 𝑧𝐼)
9089adantrl 709 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑧𝐼)
9188, 90ffvelrnd 6610 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘𝑅))
921frlmsca 20461 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝑌))
93923adant3 1168 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑅 = (Scalar‘𝑌))
9493fveq2d 6438 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9594adantr 474 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9691, 95eleqtrd 2909 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)))
975, 45lspssid 19345 . . . . . . . . . . . . . . 15 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
983, 63, 97syl2anc 581 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
9998adantr 474 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
100 funfvima2 6750 . . . . . . . . . . . . . . . 16 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
10138, 41, 100syl2anc 581 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
102101imp 397 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → (𝑈𝑧) ∈ (𝑈𝐽))
103102adantrl 709 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝑈𝐽))
10499, 103sseldd 3829 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))
105 eqid 2826 . . . . . . . . . . . . 13 (Scalar‘𝑌) = (Scalar‘𝑌)
106 eqid 2826 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
107105, 54, 106, 4lssvscl 19315 . . . . . . . . . . . 12 (((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) ∧ ((𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
10884, 85, 96, 104, 107syl22anc 874 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
109108anassrs 461 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
110109adantlrr 714 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
111 id 22 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
112111adantrr 710 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
113112adantr 474 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
114 simplrr 798 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧𝐼)
115 simpr 479 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ¬ 𝑧𝐽)
116114, 115eldifd 3810 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧 ∈ (𝐼𝐽))
117 oveq1 6913 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 supp 0 ) = (𝑦 supp 0 ))
118117sseq1d 3858 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑦 supp 0 ) ⊆ 𝐽))
119118, 7elrab2 3590 . . . . . . . . . . . . . . . . 17 (𝑦𝐶 ↔ (𝑦𝐵 ∧ (𝑦 supp 0 ) ⊆ 𝐽))
120119simprbi 492 . . . . . . . . . . . . . . . 16 (𝑦𝐶 → (𝑦 supp 0 ) ⊆ 𝐽)
121120adantl 475 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ⊆ 𝐽)
1226fvexi 6448 . . . . . . . . . . . . . . . 16 0 ∈ V
123122a1i 11 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 0 ∈ V)
12487, 121, 49, 123suppssr 7592 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧 ∈ (𝐼𝐽)) → (𝑦𝑧) = 0 )
125113, 116, 124syl2anc 581 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = 0 )
12693fveq2d 6438 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (0g𝑅) = (0g‘(Scalar‘𝑌)))
1276, 126syl5eq 2874 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 0 = (0g‘(Scalar‘𝑌)))
128127ad2antrr 719 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 0 = (0g‘(Scalar‘𝑌)))
129125, 128eqtrd 2862 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = (0g‘(Scalar‘𝑌)))
130129oveq1d 6921 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)))
1313ad2antrr 719 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑌 ∈ LMod)
13211ffvelrnda 6609 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐼) → (𝑈𝑧) ∈ 𝐵)
133132adantrl 709 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → (𝑈𝑧) ∈ 𝐵)
134133adantr 474 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑈𝑧) ∈ 𝐵)
135 eqid 2826 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1365, 105, 54, 135, 57lmod0vs 19253 . . . . . . . . . . . 12 ((𝑌 ∈ LMod ∧ (𝑈𝑧) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
137131, 134, 136syl2anc 581 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
138130, 137eqtrd 2862 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
13965ad2antrr 719 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
14057, 4lss0cl 19304 . . . . . . . . . . 11 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
141131, 139, 140syl2anc 581 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
142138, 141eqeltrd 2907 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
143110, 142pm2.61dan 849 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
14483, 143eqeltrd 2907 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
145144expr 450 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑧𝐼 → ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
146145ralrimiv 3175 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ∀𝑧𝐼 ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
147 ffnfv 6638 . . . . 5 ((𝑦𝑓 ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)) ↔ ((𝑦𝑓 ( ·𝑠𝑌)𝑈) Fn 𝐼 ∧ ∀𝑧𝐼 ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
14876, 146, 147sylanbrc 580 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦𝑓 ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)))
1491, 6, 5frlmbasfsupp 20466 . . . . . . . 8 ((𝐼𝑉𝑦𝐵) → 𝑦 finSupp 0 )
150149fsuppimpd 8552 . . . . . . 7 ((𝐼𝑉𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
15149, 53, 150syl2anc 581 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ∈ Fin)
152 dffn2 6281 . . . . . . . . 9 ((𝑦𝑓 ( ·𝑠𝑌)𝑈) Fn 𝐼 ↔ (𝑦𝑓 ( ·𝑠𝑌)𝑈):𝐼⟶V)
15375, 152sylib 210 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦𝑓 ( ·𝑠𝑌)𝑈):𝐼⟶V)
15471adantr 474 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑦 Fn 𝐼)
15536ad2antrr 719 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑈 Fn 𝐼)
156 simpll2 1277 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝐼𝑉)
157 eldifi 3960 . . . . . . . . . . 11 (𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 )) → 𝑥𝐼)
158157adantl 475 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑥𝐼)
159 fnfvof 7172 . . . . . . . . . 10 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
160154, 155, 156, 158, 159syl22anc 874 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
161 ssidd 3850 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
162122a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 0 ∈ V)
16370, 161, 73, 162suppssr 7592 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = 0 )
164127ad2antrr 719 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 0 = (0g‘(Scalar‘𝑌)))
165163, 164eqtrd 2862 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = (0g‘(Scalar‘𝑌)))
166165oveq1d 6921 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)))
1673ad2antrr 719 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑌 ∈ LMod)
16811adantr 474 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈:𝐼𝐵)
169 ffvelrn 6607 . . . . . . . . . . 11 ((𝑈:𝐼𝐵𝑥𝐼) → (𝑈𝑥) ∈ 𝐵)
170168, 157, 169syl2an 591 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑈𝑥) ∈ 𝐵)
1715, 105, 54, 135, 57lmod0vs 19253 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ (𝑈𝑥) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
172167, 170, 171syl2anc 581 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
173160, 166, 1723eqtrd 2866 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈)‘𝑥) = (0g𝑌))
174153, 173suppss 7591 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
17553, 174syldan 587 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
176 ssfi 8450 . . . . . 6 (((𝑦 supp 0 ) ∈ Fin ∧ ((𝑦𝑓 ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 )) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin)
177151, 175, 176syl2anc 581 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin)
178 simp2 1173 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐼𝑉)
1791, 17, 5frlmbasmap 20467 . . . . . . . . . 10 ((𝐼𝑉𝑦𝐵) → 𝑦 ∈ ((Base‘𝑅) ↑𝑚 𝐼))
180178, 86, 179syl2an 591 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ ((Base‘𝑅) ↑𝑚 𝐼))
181 elmapfn 8146 . . . . . . . . 9 (𝑦 ∈ ((Base‘𝑅) ↑𝑚 𝐼) → 𝑦 Fn 𝐼)
182180, 181syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
18311adantr 474 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈:𝐼𝐵)
184183ffnd 6280 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈 Fn 𝐼)
185182, 184, 49, 49, 74offn 7169 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦𝑓 ( ·𝑠𝑌)𝑈) Fn 𝐼)
186 fnfun 6222 . . . . . . 7 ((𝑦𝑓 ( ·𝑠𝑌)𝑈) Fn 𝐼 → Fun (𝑦𝑓 ( ·𝑠𝑌)𝑈))
187185, 186syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → Fun (𝑦𝑓 ( ·𝑠𝑌)𝑈))
188 ovexd 6940 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦𝑓 ( ·𝑠𝑌)𝑈) ∈ V)
189 fvex 6447 . . . . . . 7 (0g𝑌) ∈ V
190189a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (0g𝑌) ∈ V)
191 funisfsupp 8550 . . . . . 6 ((Fun (𝑦𝑓 ( ·𝑠𝑌)𝑈) ∧ (𝑦𝑓 ( ·𝑠𝑌)𝑈) ∈ V ∧ (0g𝑌) ∈ V) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦𝑓 ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
192187, 188, 190, 191syl3anc 1496 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦𝑓 ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦𝑓 ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
193177, 192mpbird 249 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦𝑓 ( ·𝑠𝑌)𝑈) finSupp (0g𝑌))
19457, 60, 49, 68, 148, 193gsumsubgcl 18674 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑌 Σg (𝑦𝑓 ( ·𝑠𝑌)𝑈)) ∈ (𝐾‘(𝑈𝐽)))
19556, 194eqeltrd 2907 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ (𝐾‘(𝑈𝐽)))
19647, 195eqelssd 3848 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166   ≠ wne 3000  ∀wral 3118  {crab 3122  Vcvv 3415   ∖ cdif 3796   ∩ cin 3798   ⊆ wss 3799  ∅c0 4145   class class class wbr 4874  dom cdm 5343  ran crn 5344   “ cima 5346  Fun wfun 6118   Fn wfn 6119  ⟶wf 6120  ‘cfv 6124  (class class class)co 6906   ∘𝑓 cof 7156   supp csupp 7560   ↑𝑚 cmap 8123  Fincfn 8223   finSupp cfsupp 8545  Basecbs 16223  Scalarcsca 16309   ·𝑠 cvsca 16310  0gc0g 16454   Σg cgsu 16455  SubGrpcsubg 17940  Abelcabl 18548  Ringcrg 18902  LModclmod 19220  LSubSpclss 19289  LSpanclspn 19331   freeLMod cfrlm 20454   unitVec cuvc 20489 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fsupp 8546  df-sup 8618  df-oi 8685  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-fz 12621  df-fzo 12762  df-seq 13097  df-hash 13412  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-sca 16322  df-vsca 16323  df-ip 16324  df-tset 16325  df-ple 16326  df-ds 16328  df-hom 16330  df-cco 16331  df-0g 16456  df-gsum 16457  df-prds 16462  df-pws 16464  df-mre 16600  df-mrc 16601  df-acs 16603  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-mhm 17689  df-submnd 17690  df-grp 17780  df-minusg 17781  df-sbg 17782  df-mulg 17896  df-subg 17943  df-ghm 18010  df-cntz 18101  df-cmn 18549  df-abl 18550  df-mgp 18845  df-ur 18857  df-ring 18904  df-subrg 19135  df-lmod 19222  df-lss 19290  df-lsp 19332  df-lmhm 19382  df-sra 19534  df-rgmod 19535  df-dsmm 20440  df-frlm 20455  df-uvc 20490 This theorem is referenced by:  frlmlbs  20504
 Copyright terms: Public domain W3C validator