MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslsp Structured version   Visualization version   GIF version

Theorem frlmsslsp 21728
Description: A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmsslsp.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslsp.u 𝑈 = (𝑅 unitVec 𝐼)
frlmsslsp.k 𝐾 = (LSpan‘𝑌)
frlmsslsp.b 𝐵 = (Base‘𝑌)
frlmsslsp.z 0 = (0g𝑅)
frlmsslsp.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
Assertion
Ref Expression
frlmsslsp ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑈   𝑥,𝐵   𝑥, 0   𝑥,𝑅   𝑥,𝐼   𝑥,𝑉   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslsp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmsslsp.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
21frlmlmod 21681 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ LMod)
323adant3 1132 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ LMod)
4 eqid 2731 . . . 4 (LSubSp‘𝑌) = (LSubSp‘𝑌)
5 frlmsslsp.b . . . 4 𝐵 = (Base‘𝑌)
6 frlmsslsp.z . . . 4 0 = (0g𝑅)
7 frlmsslsp.c . . . 4 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
81, 4, 5, 6, 7frlmsslss2 21707 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 ∈ (LSubSp‘𝑌))
9 frlmsslsp.u . . . . . . . . . 10 𝑈 = (𝑅 unitVec 𝐼)
109, 1, 5uvcff 21723 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
11103adant3 1132 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈:𝐼𝐵)
1211adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑈:𝐼𝐵)
13 simp3 1138 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽𝐼)
1413sselda 3929 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝑦𝐼)
1512, 14ffvelcdmd 7013 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐵)
16 simpl2 1193 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → 𝐼𝑉)
17 eqid 2731 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
181, 17, 5frlmbasf 21692 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑈𝑦) ∈ 𝐵) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
1916, 15, 18syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦):𝐼⟶(Base‘𝑅))
20 simpll1 1213 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑅 ∈ Ring)
21 simpll2 1214 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝐼𝑉)
2214adantr 480 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝐼)
23 eldifi 4076 . . . . . . . . 9 (𝑥 ∈ (𝐼𝐽) → 𝑥𝐼)
2423adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑥𝐼)
25 elneeldif 3911 . . . . . . . . 9 ((𝑦𝐽𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
2625adantll 714 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → 𝑦𝑥)
279, 20, 21, 22, 24, 26, 6uvcvv0 21722 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) ∧ 𝑥 ∈ (𝐼𝐽)) → ((𝑈𝑦)‘𝑥) = 0 )
2819, 27suppss 8119 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → ((𝑈𝑦) supp 0 ) ⊆ 𝐽)
29 oveq1 7348 . . . . . . . 8 (𝑥 = (𝑈𝑦) → (𝑥 supp 0 ) = ((𝑈𝑦) supp 0 ))
3029sseq1d 3961 . . . . . . 7 (𝑥 = (𝑈𝑦) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3130, 7elrab2 3645 . . . . . 6 ((𝑈𝑦) ∈ 𝐶 ↔ ((𝑈𝑦) ∈ 𝐵 ∧ ((𝑈𝑦) supp 0 ) ⊆ 𝐽))
3215, 28, 31sylanbrc 583 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐽) → (𝑈𝑦) ∈ 𝐶)
3332ralrimiva 3124 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶)
3411ffund 6650 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → Fun 𝑈)
3511fdmd 6656 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → dom 𝑈 = 𝐼)
3613, 35sseqtrrd 3967 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐽 ⊆ dom 𝑈)
37 funimass4 6881 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
3834, 36, 37syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ((𝑈𝐽) ⊆ 𝐶 ↔ ∀𝑦𝐽 (𝑈𝑦) ∈ 𝐶))
3933, 38mpbird 257 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐶)
40 frlmsslsp.k . . . 4 𝐾 = (LSpan‘𝑌)
414, 40lspssp 20916 . . 3 ((𝑌 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝑌) ∧ (𝑈𝐽) ⊆ 𝐶) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
423, 8, 39, 41syl3anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ⊆ 𝐶)
43 simpl1 1192 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑅 ∈ Ring)
44 simpl2 1193 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝐼𝑉)
457ssrab3 4027 . . . . . 6 𝐶𝐵
4645a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝐵)
4746sselda 3929 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦𝐵)
48 eqid 2731 . . . . 5 ( ·𝑠𝑌) = ( ·𝑠𝑌)
499, 1, 5, 48uvcresum 21725 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝑦𝐵) → 𝑦 = (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)))
5043, 44, 47, 49syl3anc 1373 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 = (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)))
51 eqid 2731 . . . 4 (0g𝑌) = (0g𝑌)
52 lmodabl 20837 . . . . . 6 (𝑌 ∈ LMod → 𝑌 ∈ Abel)
533, 52syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑌 ∈ Abel)
5453adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑌 ∈ Abel)
55 imassrn 6015 . . . . . . . 8 (𝑈𝐽) ⊆ ran 𝑈
5611frnd 6654 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → ran 𝑈𝐵)
5755, 56sstrid 3941 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ 𝐵)
585, 4, 40lspcl 20904 . . . . . . 7 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
593, 57, 58syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
604lsssubg 20885 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
613, 59, 60syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
6261adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝐾‘(𝑈𝐽)) ∈ (SubGrp‘𝑌))
631, 17, 5frlmbasf 21692 . . . . . . . . 9 ((𝐼𝑉𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
64633ad2antl2 1187 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
6564ffnd 6647 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑦 Fn 𝐼)
6611ffnd 6647 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑈 Fn 𝐼)
6766adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈 Fn 𝐼)
68 simpl2 1193 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝐼𝑉)
69 inidm 4172 . . . . . . 7 (𝐼𝐼) = 𝐼
7065, 67, 68, 68, 69offn 7618 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
7147, 70syldan 591 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼)
7247, 65syldan 591 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
7372adantrr 717 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑦 Fn 𝐼)
7466adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑈 Fn 𝐼)
75 simpl2 1193 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝐼𝑉)
76 simprr 772 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → 𝑧𝐼)
77 fnfvof 7622 . . . . . . . . 9 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
7873, 74, 75, 76, 77syl22anc 838 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) = ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)))
793adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑌 ∈ LMod)
8059adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
8145sseli 3925 . . . . . . . . . . . . . . . 16 (𝑦𝐶𝑦𝐵)
8281, 64sylan2 593 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦:𝐼⟶(Base‘𝑅))
8382adantrr 717 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑦:𝐼⟶(Base‘𝑅))
8413sselda 3929 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → 𝑧𝐼)
8584adantrl 716 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → 𝑧𝐼)
8683, 85ffvelcdmd 7013 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘𝑅))
871frlmsca 21685 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝑌))
88873adant3 1132 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝑅 = (Scalar‘𝑌))
8988fveq2d 6821 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9089adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
9186, 90eleqtrd 2833 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)))
925, 40lspssid 20913 . . . . . . . . . . . . . . 15 ((𝑌 ∈ LMod ∧ (𝑈𝐽) ⊆ 𝐵) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
933, 57, 92syl2anc 584 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
9493adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝐽) ⊆ (𝐾‘(𝑈𝐽)))
95 funfvima2 7160 . . . . . . . . . . . . . . . 16 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
9634, 36, 95syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝑧𝐽 → (𝑈𝑧) ∈ (𝑈𝐽)))
9796imp 406 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐽) → (𝑈𝑧) ∈ (𝑈𝐽))
9897adantrl 716 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝑈𝐽))
9994, 98sseldd 3930 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))
100 eqid 2731 . . . . . . . . . . . . 13 (Scalar‘𝑌) = (Scalar‘𝑌)
101 eqid 2731 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
102100, 48, 101, 4lssvscl 20883 . . . . . . . . . . . 12 (((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) ∧ ((𝑦𝑧) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑧) ∈ (𝐾‘(𝑈𝐽)))) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
10379, 80, 91, 99, 102syl22anc 838 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐽)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
104103anassrs 467 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
105104adantlrr 721 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
106 id 22 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
107106adantrr 717 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
108107adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶))
109 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧𝐼)
110 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ¬ 𝑧𝐽)
111109, 110eldifd 3908 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑧 ∈ (𝐼𝐽))
112 oveq1 7348 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 supp 0 ) = (𝑦 supp 0 ))
113112sseq1d 3961 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑦 supp 0 ) ⊆ 𝐽))
114113, 7elrab2 3645 . . . . . . . . . . . . . . . . 17 (𝑦𝐶 ↔ (𝑦𝐵 ∧ (𝑦 supp 0 ) ⊆ 𝐽))
115114simprbi 496 . . . . . . . . . . . . . . . 16 (𝑦𝐶 → (𝑦 supp 0 ) ⊆ 𝐽)
116115adantl 481 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ⊆ 𝐽)
1176fvexi 6831 . . . . . . . . . . . . . . . 16 0 ∈ V
118117a1i 11 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 0 ∈ V)
11982, 116, 44, 118suppssr 8120 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) ∧ 𝑧 ∈ (𝐼𝐽)) → (𝑦𝑧) = 0 )
120108, 111, 119syl2anc 584 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = 0 )
12188fveq2d 6821 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (0g𝑅) = (0g‘(Scalar‘𝑌)))
1226, 121eqtrid 2778 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 0 = (0g‘(Scalar‘𝑌)))
123122ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 0 = (0g‘(Scalar‘𝑌)))
124120, 123eqtrd 2766 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑦𝑧) = (0g‘(Scalar‘𝑌)))
125124oveq1d 7356 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)))
1263ad2antrr 726 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → 𝑌 ∈ LMod)
12711ffvelcdmda 7012 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑧𝐼) → (𝑈𝑧) ∈ 𝐵)
128127adantrl 716 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → (𝑈𝑧) ∈ 𝐵)
129128adantr 480 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝑈𝑧) ∈ 𝐵)
130 eqid 2731 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1315, 100, 48, 130, 51lmod0vs 20823 . . . . . . . . . . . 12 ((𝑌 ∈ LMod ∧ (𝑈𝑧) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
132126, 129, 131syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
133125, 132eqtrd 2766 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) = (0g𝑌))
13459ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌))
13551, 4lss0cl 20875 . . . . . . . . . . 11 ((𝑌 ∈ LMod ∧ (𝐾‘(𝑈𝐽)) ∈ (LSubSp‘𝑌)) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
136126, 134, 135syl2anc 584 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → (0g𝑌) ∈ (𝐾‘(𝑈𝐽)))
137133, 136eqeltrd 2831 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) ∧ ¬ 𝑧𝐽) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
138105, 137pm2.61dan 812 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦𝑧)( ·𝑠𝑌)(𝑈𝑧)) ∈ (𝐾‘(𝑈𝐽)))
13978, 138eqeltrd 2831 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ (𝑦𝐶𝑧𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
140139expr 456 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑧𝐼 → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
141140ralrimiv 3123 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ∀𝑧𝐼 ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽)))
142 ffnfv 7047 . . . . 5 ((𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 ∧ ∀𝑧𝐼 ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑧) ∈ (𝐾‘(𝑈𝐽))))
14371, 141, 142sylanbrc 583 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶(𝐾‘(𝑈𝐽)))
1441, 6, 5frlmbasfsupp 21690 . . . . . . . 8 ((𝐼𝑉𝑦𝐵) → 𝑦 finSupp 0 )
145144fsuppimpd 9248 . . . . . . 7 ((𝐼𝑉𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
14644, 47, 145syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦 supp 0 ) ∈ Fin)
147 dffn2 6648 . . . . . . . . 9 ((𝑦f ( ·𝑠𝑌)𝑈) Fn 𝐼 ↔ (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶V)
14870, 147sylib 218 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦f ( ·𝑠𝑌)𝑈):𝐼⟶V)
14965adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑦 Fn 𝐼)
15066ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑈 Fn 𝐼)
151 simpll2 1214 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝐼𝑉)
152 eldifi 4076 . . . . . . . . . . 11 (𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 )) → 𝑥𝐼)
153152adantl 481 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑥𝐼)
154 fnfvof 7622 . . . . . . . . . 10 (((𝑦 Fn 𝐼𝑈 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
155149, 150, 151, 153, 154syl22anc 838 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)))
156 ssidd 3953 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
157117a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 0 ∈ V)
15864, 156, 68, 157suppssr 8120 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = 0 )
159122ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 0 = (0g‘(Scalar‘𝑌)))
160158, 159eqtrd 2766 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑦𝑥) = (0g‘(Scalar‘𝑌)))
161160oveq1d 7356 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦𝑥)( ·𝑠𝑌)(𝑈𝑥)) = ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)))
1623ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → 𝑌 ∈ LMod)
16311adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → 𝑈:𝐼𝐵)
164 ffvelcdm 7009 . . . . . . . . . . 11 ((𝑈:𝐼𝐵𝑥𝐼) → (𝑈𝑥) ∈ 𝐵)
165163, 152, 164syl2an 596 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → (𝑈𝑥) ∈ 𝐵)
1665, 100, 48, 130, 51lmod0vs 20823 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ (𝑈𝑥) ∈ 𝐵) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
167162, 165, 166syl2anc 584 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((0g‘(Scalar‘𝑌))( ·𝑠𝑌)(𝑈𝑥)) = (0g𝑌))
168155, 161, 1673eqtrd 2770 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) ∧ 𝑥 ∈ (𝐼 ∖ (𝑦 supp 0 ))) → ((𝑦f ( ·𝑠𝑌)𝑈)‘𝑥) = (0g𝑌))
169148, 168suppss 8119 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐵) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
17047, 169syldan 591 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ⊆ (𝑦 supp 0 ))
171146, 170ssfid 9148 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin)
172 simp2 1137 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐼𝑉)
1731, 17, 5frlmbasmap 21691 . . . . . . . . 9 ((𝐼𝑉𝑦𝐵) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼))
174172, 81, 173syl2an 596 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ ((Base‘𝑅) ↑m 𝐼))
175 elmapfn 8784 . . . . . . . 8 (𝑦 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑦 Fn 𝐼)
176174, 175syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 Fn 𝐼)
17711adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈:𝐼𝐵)
178177ffnd 6647 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑈 Fn 𝐼)
179176, 178, 44, 44offun 7619 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → Fun (𝑦f ( ·𝑠𝑌)𝑈))
180 ovexd 7376 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) ∈ V)
181 fvexd 6832 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (0g𝑌) ∈ V)
182 funisfsupp 9246 . . . . . 6 ((Fun (𝑦f ( ·𝑠𝑌)𝑈) ∧ (𝑦f ( ·𝑠𝑌)𝑈) ∈ V ∧ (0g𝑌) ∈ V) → ((𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
183179, 180, 181, 182syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → ((𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌) ↔ ((𝑦f ( ·𝑠𝑌)𝑈) supp (0g𝑌)) ∈ Fin))
184171, 183mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑦f ( ·𝑠𝑌)𝑈) finSupp (0g𝑌))
18551, 54, 44, 62, 143, 184gsumsubgcl 19827 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → (𝑌 Σg (𝑦f ( ·𝑠𝑌)𝑈)) ∈ (𝐾‘(𝑈𝐽)))
18650, 185eqeltrd 2831 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑦𝐶) → 𝑦 ∈ (𝐾‘(𝑈𝐽)))
18742, 186eqelssd 3951 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐾‘(𝑈𝐽)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  wss 3897   class class class wbr 5086  dom cdm 5611  ran crn 5612  cima 5614  Fun wfun 6470   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  f cof 7603   supp csupp 8085  m cmap 8745  Fincfn 8864   finSupp cfsupp 9240  Basecbs 17115  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338   Σg cgsu 17339  SubGrpcsubg 19028  Abelcabl 19688  Ringcrg 20146  LModclmod 20788  LSubSpclss 20859  LSpanclspn 20899   freeLMod cfrlm 21678   unitVec cuvc 21714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-subrg 20480  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lmhm 20951  df-sra 21102  df-rgmod 21103  df-dsmm 21664  df-frlm 21679  df-uvc 21715
This theorem is referenced by:  frlmlbs  21729
  Copyright terms: Public domain W3C validator