Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasucdisj Structured version   Visualization version   GIF version

Theorem fmlasucdisj 35441
Description: The valid Godel formulas of height (𝑁 + 1) is disjoint with the difference ((Fmla‘suc suc 𝑁) ∖ (Fmla‘suc 𝑁)), expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmlasucdisj (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Distinct variable group:   𝑖,𝑁,𝑢,𝑣,𝑥

Proof of Theorem fmlasucdisj
Dummy variables 𝑎 𝑏 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . 5 𝑓 ∈ V
2 eqeq1 2735 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = (𝑢𝑔𝑣) ↔ 𝑓 = (𝑢𝑔𝑣)))
32rexbidv 3156 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣)))
4 eqeq1 2735 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ∀𝑔𝑖𝑢𝑓 = ∀𝑔𝑖𝑢))
54rexbidv 3156 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))
63, 5orbi12d 918 . . . . . . 7 (𝑥 = 𝑓 → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
76rexbidv 3156 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
822rexbidv 3197 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
97, 8orbi12d 918 . . . . 5 (𝑥 = 𝑓 → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣)) ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣))))
101, 9elab 3635 . . . 4 (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
11 gonar 35437 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)))
12 elndif 4083 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1312adantr 480 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1413intnanrd 489 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1511, 14syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1615ex 412 . . . . . . . . . . . . 13 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))))
1716con2d 134 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
1817impl 455 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
19 elneeldif 3916 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑎𝑢)
2019necomd 2983 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑢𝑎)
2120ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → 𝑢𝑎)
2221neneqd 2933 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 𝑢 = 𝑎)
2322orcd 873 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
24 ianor 983 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑢 = 𝑎𝑣 = 𝑏) ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
25 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑢 ∈ V
26 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
2725, 26opth 5416 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (𝑢 = 𝑎𝑣 = 𝑏))
2824, 27xchnxbir 333 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
2923, 28sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
3029olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
31 ianor 983 . . . . . . . . . . . . . . . . . 18 (¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
32 gonafv 35392 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
3332el2v 3443 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
34 gonafv 35392 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
3534el2v 3443 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
3633, 35eqeq12i 2749 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
37 1oex 8395 . . . . . . . . . . . . . . . . . . . 20 1o ∈ V
38 opex 5404 . . . . . . . . . . . . . . . . . . . 20 𝑢, 𝑣⟩ ∈ V
3937, 38opth 5416 . . . . . . . . . . . . . . . . . . 19 (⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩ ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4036, 39bitri 275 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4131, 40xchnxbir 333 . . . . . . . . . . . . . . . . 17 (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4230, 41sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4342ralrimivw 3128 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4443ralrimiva 3124 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4544adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4645adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
47 gonanegoal 35394 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑗𝑎
4847neii 2930 . . . . . . . . . . . . . . 15 ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎
4948a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5049ralrimivw 3128 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5150ralrimivw 3128 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
52 r19.26 3092 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5346, 51, 52sylanbrc 583 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5418, 53jca 511 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
55 eleq1 2819 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → (𝑓 ∈ (Fmla‘𝑁) ↔ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
5655notbid 318 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ↔ ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
57 eqeq1 2735 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = (𝑎𝑔𝑏) ↔ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5857notbid 318 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5958ralbidv 3155 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
60 eqeq1 2735 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = ∀𝑔𝑗𝑎 ↔ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6160notbid 318 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6261ralbidv 3155 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6359, 62anbi12d 632 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6463ralbidv 3155 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6556, 64anbi12d 632 . . . . . . . . . 10 (𝑓 = (𝑢𝑔𝑣) → ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))))
6654, 65syl5ibrcom 247 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
6766rexlimdva 3133 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
68 goalr 35439 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → 𝑢 ∈ (Fmla‘𝑁))
6968, 12syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
7069ex 412 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
7170con2d 134 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)))
7271imp 406 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
7372adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
74 gonanegoal 35394 . . . . . . . . . . . . . . . 16 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
7574nesymi 2985 . . . . . . . . . . . . . . 15 ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏)
7675a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7776ralrimivw 3128 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7877ralrimivw 3128 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7922olcd 874 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
80 ianor 983 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑖 = 𝑗𝑢 = 𝑎) ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
81 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
8281, 25opth 5416 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (𝑖 = 𝑗𝑢 = 𝑎))
8380, 82xchnxbir 333 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
8479, 83sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩)
8584olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
86 ianor 983 . . . . . . . . . . . . . . . . . . 19 (¬ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩) ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
87 2oex 8396 . . . . . . . . . . . . . . . . . . . 20 2o ∈ V
88 opex 5404 . . . . . . . . . . . . . . . . . . . 20 𝑖, 𝑢⟩ ∈ V
8987, 88opth 5416 . . . . . . . . . . . . . . . . . . 19 (⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9086, 89xchnxbir 333 . . . . . . . . . . . . . . . . . 18 (¬ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
91 df-goal 35384 . . . . . . . . . . . . . . . . . . 19 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
92 df-goal 35384 . . . . . . . . . . . . . . . . . . 19 𝑔𝑗𝑎 = ⟨2o, ⟨𝑗, 𝑎⟩⟩
9391, 92eqeq12i 2749 . . . . . . . . . . . . . . . . . 18 (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩)
9490, 93xchnxbir 333 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9585, 94sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9695ralrimivw 3128 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9796ralrimiva 3124 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9897adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9998adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
100 r19.26 3092 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10178, 99, 100sylanbrc 583 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10273, 101jca 511 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)))
103 eleq1 2819 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
104103notbid 318 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
105 eqeq1 2735 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
106105notbid 318 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
107106ralbidv 3155 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
108 eqeq1 2735 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
109108notbid 318 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
110109ralbidv 3155 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
111107, 110anbi12d 632 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
112111ralbidv 3155 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
113104, 112anbi12d 632 . . . . . . . . . . 11 (∀𝑔𝑖𝑢 = 𝑓 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
114113eqcoms 2739 . . . . . . . . . 10 (𝑓 = ∀𝑔𝑖𝑢 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
115102, 114syl5ibcom 245 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
116115rexlimdva 3133 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
11767, 116jaod 859 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
118117rexlimdva 3133 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
119 elndif 4083 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (Fmla‘𝑁) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
120119adantl 481 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
121120intnand 488 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
12211, 121syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
123122ex 412 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))))
124123con2d 134 . . . . . . . . . . 11 (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
125124impl 455 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
126 elneeldif 3916 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑏𝑣)
127126necomd 2983 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑣𝑏)
128127ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → 𝑣𝑏)
129128neneqd 2933 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 𝑣 = 𝑏)
130129olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
131130, 28sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
132131intnand 488 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
133132, 40sylnibr 329 . . . . . . . . . . . . . 14 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
134133ralrimiva 3124 . . . . . . . . . . . . 13 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
135134ralrimivw 3128 . . . . . . . . . . . 12 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
136135adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
13748a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
138137ralrimivw 3128 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
139138ralrimivw 3128 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
140136, 139, 52sylanbrc 583 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
141125, 140jca 511 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
142 eleq1 2819 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
143142notbid 318 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
144 eqeq1 2735 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
145144notbid 318 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
146145ralbidv 3155 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
147 eqeq1 2735 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
148147notbid 318 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
149148ralbidv 3155 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
150146, 149anbi12d 632 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
151150ralbidv 3155 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
152143, 151anbi12d 632 . . . . . . . . . 10 ((𝑢𝑔𝑣) = 𝑓 → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
153152eqcoms 2739 . . . . . . . . 9 (𝑓 = (𝑢𝑔𝑣) → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
154141, 153syl5ibcom 245 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
155154rexlimdva 3133 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
156155rexlimdva 3133 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
157118, 156jaod 859 . . . . 5 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
158 isfmlasuc 35430 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑓 ∈ V) → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
159158elvd 3442 . . . . . . 7 (𝑁 ∈ ω → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
160159notbid 318 . . . . . 6 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ ¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
161 ioran 985 . . . . . . 7 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))
162 ralnex 3058 . . . . . . . . . . . 12 (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏))
163 ralnex 3058 . . . . . . . . . . . 12 (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)
164162, 163anbi12i 628 . . . . . . . . . . 11 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
165 ioran 985 . . . . . . . . . . 11 (¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
166164, 165bitr4i 278 . . . . . . . . . 10 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
167166ralbii 3078 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
168 ralnex 3058 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
169167, 168bitr2i 276 . . . . . . . 8 (¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
170169anbi2i 623 . . . . . . 7 ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
171161, 170bitri 275 . . . . . 6 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
172160, 171bitrdi 287 . . . . 5 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
173157, 172sylibrd 259 . . . 4 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
17410, 173biimtrid 242 . . 3 (𝑁 ∈ ω → (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
175174ralrimiv 3123 . 2 (𝑁 ∈ ω → ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
176 disjr 4401 . 2 (((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅ ↔ ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
177175, 176sylibr 234 1 (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  cin 3901  c0 4283  cop 4582  suc csuc 6308  cfv 6481  (class class class)co 7346  ωcom 7796  1oc1o 8378  2oc2o 8379  𝑔cgna 35376  𝑔cgol 35377  Fmlacfmla 35379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-map 8752  df-goel 35382  df-gona 35383  df-goal 35384  df-sat 35385  df-fmla 35387
This theorem is referenced by:  satffunlem2lem2  35448
  Copyright terms: Public domain W3C validator