| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vex 3483 | . . . . 5
⊢ 𝑓 ∈ V | 
| 2 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑥 = 𝑓 → (𝑥 = (𝑢⊼𝑔𝑣) ↔ 𝑓 = (𝑢⊼𝑔𝑣))) | 
| 3 | 2 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑥 = 𝑓 → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣))) | 
| 4 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑥 = 𝑓 → (𝑥 = ∀𝑔𝑖𝑢 ↔ 𝑓 = ∀𝑔𝑖𝑢)) | 
| 5 | 4 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑥 = 𝑓 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)) | 
| 6 | 3, 5 | orbi12d 918 | . . . . . . 7
⊢ (𝑥 = 𝑓 → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))) | 
| 7 | 6 | rexbidv 3178 | . . . . . 6
⊢ (𝑥 = 𝑓 → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))) | 
| 8 | 2 | 2rexbidv 3221 | . . . . . 6
⊢ (𝑥 = 𝑓 → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣) ↔ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣))) | 
| 9 | 7, 8 | orbi12d 918 | . . . . 5
⊢ (𝑥 = 𝑓 → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣)) ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣)))) | 
| 10 | 1, 9 | elab 3678 | . . . 4
⊢ (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))} ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣))) | 
| 11 |  | gonar 35401 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ω ∧ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) → (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁))) | 
| 12 |  | elndif 4132 | . . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) | 
| 13 | 12 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) | 
| 14 | 13 | intnanrd 489 | . . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))) | 
| 15 | 11, 14 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ω ∧ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))) | 
| 16 | 15 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ω → ((𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))) | 
| 17 | 16 | con2d 134 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ω → ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁))) | 
| 18 | 17 | impl 455 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) | 
| 19 |  | elneeldif 3964 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑎 ≠ 𝑢) | 
| 20 | 19 | necomd 2995 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑢 ≠ 𝑎) | 
| 21 | 20 | ancoms 458 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → 𝑢 ≠ 𝑎) | 
| 22 | 21 | neneqd 2944 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 𝑢 = 𝑎) | 
| 23 | 22 | orcd 873 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏)) | 
| 24 |  | ianor 983 | . . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏)) | 
| 25 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑢 ∈ V | 
| 26 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑣 ∈ V | 
| 27 | 25, 26 | opth 5480 | . . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉 ↔ (𝑢 = 𝑎 ∧ 𝑣 = 𝑏)) | 
| 28 | 24, 27 | xchnxbir 333 | . . . . . . . . . . . . . . . . . . 19
⊢ (¬
〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉 ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏)) | 
| 29 | 23, 28 | sylibr 234 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉) | 
| 30 | 29 | olcd 874 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 1o =
1o ∨ ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) | 
| 31 |  | ianor 983 | . . . . . . . . . . . . . . . . . 18
⊢ (¬
(1o = 1o ∧ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉) ↔ (¬ 1o =
1o ∨ ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) | 
| 32 |  | gonafv 35356 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢⊼𝑔𝑣) = 〈1o,
〈𝑢, 𝑣〉〉) | 
| 33 | 32 | el2v 3486 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢⊼𝑔𝑣) = 〈1o,
〈𝑢, 𝑣〉〉 | 
| 34 |  | gonafv 35356 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = 〈1o,
〈𝑎, 𝑏〉〉) | 
| 35 | 34 | el2v 3486 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎⊼𝑔𝑏) = 〈1o,
〈𝑎, 𝑏〉〉 | 
| 36 | 33, 35 | eqeq12i 2754 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ 〈1o, 〈𝑢, 𝑣〉〉 = 〈1o,
〈𝑎, 𝑏〉〉) | 
| 37 |  | 1oex 8517 | . . . . . . . . . . . . . . . . . . . 20
⊢
1o ∈ V | 
| 38 |  | opex 5468 | . . . . . . . . . . . . . . . . . . . 20
⊢
〈𝑢, 𝑣〉 ∈ V | 
| 39 | 37, 38 | opth 5480 | . . . . . . . . . . . . . . . . . . 19
⊢
(〈1o, 〈𝑢, 𝑣〉〉 = 〈1o,
〈𝑎, 𝑏〉〉 ↔ (1o =
1o ∧ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) | 
| 40 | 36, 39 | bitri 275 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ (1o = 1o ∧
〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) | 
| 41 | 31, 40 | xchnxbir 333 | . . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ (¬ 1o = 1o
∨ ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) | 
| 42 | 30, 41 | sylibr 234 | . . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 43 | 42 | ralrimivw 3149 | . . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 44 | 43 | ralrimiva 3145 | . . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 45 | 44 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 46 | 45 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 47 |  | gonanegoal 35358 | . . . . . . . . . . . . . . . 16
⊢ (𝑢⊼𝑔𝑣) ≠
∀𝑔𝑗𝑎 | 
| 48 | 47 | neii 2941 | . . . . . . . . . . . . . . 15
⊢  ¬
(𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎 | 
| 49 | 48 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) | 
| 50 | 49 | ralrimivw 3149 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) | 
| 51 | 50 | ralrimivw 3149 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) | 
| 52 |  | r19.26 3110 | . . . . . . . . . . . 12
⊢
(∀𝑎 ∈
(Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) | 
| 53 | 46, 51, 52 | sylanbrc 583 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) | 
| 54 | 18, 53 | jca 511 | . . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎))) | 
| 55 |  | eleq1 2828 | . . . . . . . . . . . 12
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (𝑓 ∈ (Fmla‘𝑁) ↔ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁))) | 
| 56 | 55 | notbid 318 | . . . . . . . . . . 11
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ↔ ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁))) | 
| 57 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (𝑓 = (𝑎⊼𝑔𝑏) ↔ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏))) | 
| 58 | 57 | notbid 318 | . . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 = (𝑎⊼𝑔𝑏) ↔ ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏))) | 
| 59 | 58 | ralbidv 3177 | . . . . . . . . . . . . 13
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏))) | 
| 60 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (𝑓 = ∀𝑔𝑗𝑎 ↔ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) | 
| 61 | 60 | notbid 318 | . . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) | 
| 62 | 61 | ralbidv 3177 | . . . . . . . . . . . . 13
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) | 
| 63 | 59, 62 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎))) | 
| 64 | 63 | ralbidv 3177 | . . . . . . . . . . 11
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎))) | 
| 65 | 56, 64 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)))) | 
| 66 | 54, 65 | syl5ibrcom 247 | . . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 67 | 66 | rexlimdva 3154 | . . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 68 |  | goalr 35403 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ω ∧
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → 𝑢 ∈ (Fmla‘𝑁)) | 
| 69 | 68, 12 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ω ∧
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) | 
| 70 | 69 | ex 412 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ω →
(∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))) | 
| 71 | 70 | con2d 134 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ω → (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))) | 
| 72 | 71 | imp 406 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) | 
| 73 | 72 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) | 
| 74 |  | gonanegoal 35358 | . . . . . . . . . . . . . . . 16
⊢ (𝑎⊼𝑔𝑏) ≠
∀𝑔𝑖𝑢 | 
| 75 | 74 | nesymi 2997 | . . . . . . . . . . . . . . 15
⊢  ¬
∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) | 
| 76 | 75 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬
∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏)) | 
| 77 | 76 | ralrimivw 3149 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑏 ∈ (Fmla‘𝑁) ¬
∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏)) | 
| 78 | 77 | ralrimivw 3149 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏)) | 
| 79 | 22 | olcd 874 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎)) | 
| 80 |  | ianor 983 | . . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝑖 = 𝑗 ∧ 𝑢 = 𝑎) ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎)) | 
| 81 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑖 ∈ V | 
| 82 | 81, 25 | opth 5480 | . . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉 ↔ (𝑖 = 𝑗 ∧ 𝑢 = 𝑎)) | 
| 83 | 80, 82 | xchnxbir 333 | . . . . . . . . . . . . . . . . . . 19
⊢ (¬
〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉 ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎)) | 
| 84 | 79, 83 | sylibr 234 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉) | 
| 85 | 84 | olcd 874 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 2o =
2o ∨ ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) | 
| 86 |  | ianor 983 | . . . . . . . . . . . . . . . . . . 19
⊢ (¬
(2o = 2o ∧ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉) ↔ (¬ 2o =
2o ∨ ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) | 
| 87 |  | 2oex 8518 | . . . . . . . . . . . . . . . . . . . 20
⊢
2o ∈ V | 
| 88 |  | opex 5468 | . . . . . . . . . . . . . . . . . . . 20
⊢
〈𝑖, 𝑢〉 ∈ V | 
| 89 | 87, 88 | opth 5480 | . . . . . . . . . . . . . . . . . . 19
⊢
(〈2o, 〈𝑖, 𝑢〉〉 = 〈2o,
〈𝑗, 𝑎〉〉 ↔ (2o =
2o ∧ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) | 
| 90 | 86, 89 | xchnxbir 333 | . . . . . . . . . . . . . . . . . 18
⊢ (¬
〈2o, 〈𝑖, 𝑢〉〉 = 〈2o,
〈𝑗, 𝑎〉〉 ↔ (¬ 2o =
2o ∨ ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) | 
| 91 |  | df-goal 35348 | . . . . . . . . . . . . . . . . . . 19
⊢
∀𝑔𝑖𝑢 = 〈2o, 〈𝑖, 𝑢〉〉 | 
| 92 |  | df-goal 35348 | . . . . . . . . . . . . . . . . . . 19
⊢
∀𝑔𝑗𝑎 = 〈2o, 〈𝑗, 𝑎〉〉 | 
| 93 | 91, 92 | eqeq12i 2754 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ 〈2o, 〈𝑖, 𝑢〉〉 = 〈2o,
〈𝑗, 𝑎〉〉) | 
| 94 | 90, 93 | xchnxbir 333 | . . . . . . . . . . . . . . . . 17
⊢ (¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ (¬ 2o = 2o
∨ ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) | 
| 95 | 85, 94 | sylibr 234 | . . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) | 
| 96 | 95 | ralrimivw 3149 | . . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) | 
| 97 | 96 | ralrimiva 3145 | . . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) | 
| 98 | 97 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) | 
| 99 | 98 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) | 
| 100 |  | r19.26 3110 | . . . . . . . . . . . 12
⊢
(∀𝑎 ∈
(Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) | 
| 101 | 78, 99, 100 | sylanbrc 583 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) | 
| 102 | 73, 101 | jca 511 | . . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))) | 
| 103 |  | eleq1 2828 | . . . . . . . . . . . . 13
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁))) | 
| 104 | 103 | notbid 318 | . . . . . . . . . . . 12
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁))) | 
| 105 |  | eqeq1 2740 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ↔ 𝑓 = (𝑎⊼𝑔𝑏))) | 
| 106 | 105 | notbid 318 | . . . . . . . . . . . . . . 15
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (¬
∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ↔ ¬ 𝑓 = (𝑎⊼𝑔𝑏))) | 
| 107 | 106 | ralbidv 3177 | . . . . . . . . . . . . . 14
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏))) | 
| 108 |  | eqeq1 2740 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ 𝑓 = ∀𝑔𝑗𝑎)) | 
| 109 | 108 | notbid 318 | . . . . . . . . . . . . . . 15
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎)) | 
| 110 | 109 | ralbidv 3177 | . . . . . . . . . . . . . 14
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) | 
| 111 | 107, 110 | anbi12d 632 | . . . . . . . . . . . . 13
⊢
(∀𝑔𝑖𝑢 = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) | 
| 112 | 111 | ralbidv 3177 | . . . . . . . . . . . 12
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) | 
| 113 | 104, 112 | anbi12d 632 | . . . . . . . . . . 11
⊢
(∀𝑔𝑖𝑢 = 𝑓 → ((¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 114 | 113 | eqcoms 2744 | . . . . . . . . . 10
⊢ (𝑓 =
∀𝑔𝑖𝑢 → ((¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 115 | 102, 114 | syl5ibcom 245 | . . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 116 | 115 | rexlimdva 3154 | . . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑖 ∈ ω 𝑓 =
∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 117 | 67, 116 | jaod 859 | . . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 118 | 117 | rexlimdva 3154 | . . . . . 6
⊢ (𝑁 ∈ ω →
(∃𝑢 ∈
((Fmla‘suc 𝑁) ∖
(Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 119 |  | elndif 4132 | . . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ (Fmla‘𝑁) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) | 
| 120 | 119 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) | 
| 121 | 120 | intnand 488 | . . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))) | 
| 122 | 11, 121 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ω ∧ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))) | 
| 123 | 122 | ex 412 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ω → ((𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))) | 
| 124 | 123 | con2d 134 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁))) | 
| 125 | 124 | impl 455 | . . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) | 
| 126 |  | elneeldif 3964 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑏 ≠ 𝑣) | 
| 127 | 126 | necomd 2995 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑣 ≠ 𝑏) | 
| 128 | 127 | ancoms 458 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → 𝑣 ≠ 𝑏) | 
| 129 | 128 | neneqd 2944 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 𝑣 = 𝑏) | 
| 130 | 129 | olcd 874 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏)) | 
| 131 | 130, 28 | sylibr 234 | . . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉) | 
| 132 | 131 | intnand 488 | . . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (1o =
1o ∧ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) | 
| 133 | 132, 40 | sylnibr 329 | . . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 134 | 133 | ralrimiva 3145 | . . . . . . . . . . . . 13
⊢ (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 135 | 134 | ralrimivw 3149 | . . . . . . . . . . . 12
⊢ (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 136 | 135 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) | 
| 137 | 48 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) | 
| 138 | 137 | ralrimivw 3149 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) | 
| 139 | 138 | ralrimivw 3149 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) | 
| 140 | 136, 139,
52 | sylanbrc 583 | . . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) | 
| 141 | 125, 140 | jca 511 | . . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎))) | 
| 142 |  | eleq1 2828 | . . . . . . . . . . . 12
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁))) | 
| 143 | 142 | notbid 318 | . . . . . . . . . . 11
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁))) | 
| 144 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ 𝑓 = (𝑎⊼𝑔𝑏))) | 
| 145 | 144 | notbid 318 | . . . . . . . . . . . . . 14
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ ¬ 𝑓 = (𝑎⊼𝑔𝑏))) | 
| 146 | 145 | ralbidv 3177 | . . . . . . . . . . . . 13
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏))) | 
| 147 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ 𝑓 = ∀𝑔𝑗𝑎)) | 
| 148 | 147 | notbid 318 | . . . . . . . . . . . . . 14
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎)) | 
| 149 | 148 | ralbidv 3177 | . . . . . . . . . . . . 13
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) | 
| 150 | 146, 149 | anbi12d 632 | . . . . . . . . . . . 12
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) | 
| 151 | 150 | ralbidv 3177 | . . . . . . . . . . 11
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) | 
| 152 | 143, 151 | anbi12d 632 | . . . . . . . . . 10
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 153 | 152 | eqcoms 2744 | . . . . . . . . 9
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → ((¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 154 | 141, 153 | syl5ibcom 245 | . . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 155 | 154 | rexlimdva 3154 | . . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 156 | 155 | rexlimdva 3154 | . . . . . 6
⊢ (𝑁 ∈ ω →
(∃𝑢 ∈
(Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 157 | 118, 156 | jaod 859 | . . . . 5
⊢ (𝑁 ∈ ω →
((∃𝑢 ∈
((Fmla‘suc 𝑁) ∖
(Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣)) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 158 |  | isfmlasuc 35394 | . . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑓 ∈ V) → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 159 | 158 | elvd 3485 | . . . . . . 7
⊢ (𝑁 ∈ ω → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 160 | 159 | notbid 318 | . . . . . 6
⊢ (𝑁 ∈ ω → (¬
𝑓 ∈ (Fmla‘suc
𝑁) ↔ ¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 161 |  | ioran 985 | . . . . . . 7
⊢ (¬
(𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))) | 
| 162 |  | ralnex 3071 | . . . . . . . . . . . 12
⊢
(∀𝑏 ∈
(Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ↔ ¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏)) | 
| 163 |  | ralnex 3071 | . . . . . . . . . . . 12
⊢
(∀𝑗 ∈
ω ¬ 𝑓 =
∀𝑔𝑗𝑎 ↔ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) | 
| 164 | 162, 163 | anbi12i 628 | . . . . . . . . . . 11
⊢
((∀𝑏 ∈
(Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) | 
| 165 |  | ioran 985 | . . . . . . . . . . 11
⊢ (¬
(∃𝑏 ∈
(Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) | 
| 166 | 164, 165 | bitr4i 278 | . . . . . . . . . 10
⊢
((∀𝑏 ∈
(Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) | 
| 167 | 166 | ralbii 3092 | . . . . . . . . 9
⊢
(∀𝑎 ∈
(Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) | 
| 168 |  | ralnex 3071 | . . . . . . . . 9
⊢
(∀𝑎 ∈
(Fmla‘𝑁) ¬
(∃𝑏 ∈
(Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) | 
| 169 | 167, 168 | bitr2i 276 | . . . . . . . 8
⊢ (¬
∃𝑎 ∈
(Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) | 
| 170 | 169 | anbi2i 623 | . . . . . . 7
⊢ ((¬
𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) | 
| 171 | 161, 170 | bitri 275 | . . . . . 6
⊢ (¬
(𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) | 
| 172 | 160, 171 | bitrdi 287 | . . . . 5
⊢ (𝑁 ∈ ω → (¬
𝑓 ∈ (Fmla‘suc
𝑁) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) | 
| 173 | 157, 172 | sylibrd 259 | . . . 4
⊢ (𝑁 ∈ ω →
((∃𝑢 ∈
((Fmla‘suc 𝑁) ∖
(Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣)) → ¬ 𝑓 ∈ (Fmla‘suc 𝑁))) | 
| 174 | 10, 173 | biimtrid 242 | . . 3
⊢ (𝑁 ∈ ω → (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))} → ¬ 𝑓 ∈ (Fmla‘suc 𝑁))) | 
| 175 | 174 | ralrimiv 3144 | . 2
⊢ (𝑁 ∈ ω →
∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁)) | 
| 176 |  | disjr 4450 | . 2
⊢
(((Fmla‘suc 𝑁)
∩ {𝑥 ∣
(∃𝑢 ∈
((Fmla‘suc 𝑁) ∖
(Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))}) = ∅ ↔ ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁)) | 
| 177 | 175, 176 | sylibr 234 | 1
⊢ (𝑁 ∈ ω →
((Fmla‘suc 𝑁) ∩
{𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))}) = ∅) |