Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . . 5
⊢ 𝑓 ∈ V |
2 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = 𝑓 → (𝑥 = (𝑢⊼𝑔𝑣) ↔ 𝑓 = (𝑢⊼𝑔𝑣))) |
3 | 2 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑥 = 𝑓 → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣))) |
4 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = 𝑓 → (𝑥 = ∀𝑔𝑖𝑢 ↔ 𝑓 = ∀𝑔𝑖𝑢)) |
5 | 4 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑥 = 𝑓 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)) |
6 | 3, 5 | orbi12d 916 |
. . . . . . 7
⊢ (𝑥 = 𝑓 → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))) |
7 | 6 | rexbidv 3226 |
. . . . . 6
⊢ (𝑥 = 𝑓 → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))) |
8 | 2 | 2rexbidv 3229 |
. . . . . 6
⊢ (𝑥 = 𝑓 → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣) ↔ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣))) |
9 | 7, 8 | orbi12d 916 |
. . . . 5
⊢ (𝑥 = 𝑓 → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣)) ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣)))) |
10 | 1, 9 | elab 3609 |
. . . 4
⊢ (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))} ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣))) |
11 | | gonar 33357 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ω ∧ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) → (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁))) |
12 | | elndif 4063 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) |
13 | 12 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) |
14 | 13 | intnanrd 490 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))) |
15 | 11, 14 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ω ∧ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))) |
16 | 15 | ex 413 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ω → ((𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))) |
17 | 16 | con2d 134 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ω → ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁))) |
18 | 17 | impl 456 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) |
19 | | elneeldif 3901 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑎 ≠ 𝑢) |
20 | 19 | necomd 2999 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑢 ≠ 𝑎) |
21 | 20 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → 𝑢 ≠ 𝑎) |
22 | 21 | neneqd 2948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 𝑢 = 𝑎) |
23 | 22 | orcd 870 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏)) |
24 | | ianor 979 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏)) |
25 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑢 ∈ V |
26 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑣 ∈ V |
27 | 25, 26 | opth 5391 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉 ↔ (𝑢 = 𝑎 ∧ 𝑣 = 𝑏)) |
28 | 24, 27 | xchnxbir 333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉 ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏)) |
29 | 23, 28 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉) |
30 | 29 | olcd 871 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 1o =
1o ∨ ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) |
31 | | ianor 979 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(1o = 1o ∧ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉) ↔ (¬ 1o =
1o ∨ ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) |
32 | | gonafv 33312 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢⊼𝑔𝑣) = 〈1o,
〈𝑢, 𝑣〉〉) |
33 | 32 | el2v 3440 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢⊼𝑔𝑣) = 〈1o,
〈𝑢, 𝑣〉〉 |
34 | | gonafv 33312 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = 〈1o,
〈𝑎, 𝑏〉〉) |
35 | 34 | el2v 3440 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎⊼𝑔𝑏) = 〈1o,
〈𝑎, 𝑏〉〉 |
36 | 33, 35 | eqeq12i 2756 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ 〈1o, 〈𝑢, 𝑣〉〉 = 〈1o,
〈𝑎, 𝑏〉〉) |
37 | | 1oex 8307 |
. . . . . . . . . . . . . . . . . . . 20
⊢
1o ∈ V |
38 | | opex 5379 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈𝑢, 𝑣〉 ∈ V |
39 | 37, 38 | opth 5391 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈1o, 〈𝑢, 𝑣〉〉 = 〈1o,
〈𝑎, 𝑏〉〉 ↔ (1o =
1o ∧ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) |
40 | 36, 39 | bitri 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ (1o = 1o ∧
〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) |
41 | 31, 40 | xchnxbir 333 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ (¬ 1o = 1o
∨ ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) |
42 | 30, 41 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
43 | 42 | ralrimivw 3104 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
44 | 43 | ralrimiva 3103 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
45 | 44 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
46 | 45 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
47 | | gonanegoal 33314 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢⊼𝑔𝑣) ≠
∀𝑔𝑗𝑎 |
48 | 47 | neii 2945 |
. . . . . . . . . . . . . . 15
⊢ ¬
(𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎 |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) |
50 | 49 | ralrimivw 3104 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) |
51 | 50 | ralrimivw 3104 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) |
52 | | r19.26 3095 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
(Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) |
53 | 46, 51, 52 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) |
54 | 18, 53 | jca 512 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎))) |
55 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (𝑓 ∈ (Fmla‘𝑁) ↔ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁))) |
56 | 55 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ↔ ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁))) |
57 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (𝑓 = (𝑎⊼𝑔𝑏) ↔ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏))) |
58 | 57 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 = (𝑎⊼𝑔𝑏) ↔ ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏))) |
59 | 58 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏))) |
60 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (𝑓 = ∀𝑔𝑗𝑎 ↔ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) |
61 | 60 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) |
62 | 61 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) |
63 | 59, 62 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎))) |
64 | 63 | ralbidv 3112 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎))) |
65 | 56, 64 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)))) |
66 | 54, 65 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
67 | 66 | rexlimdva 3213 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
68 | | goalr 33359 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ω ∧
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → 𝑢 ∈ (Fmla‘𝑁)) |
69 | 68, 12 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ω ∧
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) |
70 | 69 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ω →
(∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))) |
71 | 70 | con2d 134 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ω → (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))) |
72 | 71 | imp 407 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) |
73 | 72 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) |
74 | | gonanegoal 33314 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎⊼𝑔𝑏) ≠
∀𝑔𝑖𝑢 |
75 | 74 | nesymi 3001 |
. . . . . . . . . . . . . . 15
⊢ ¬
∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) |
76 | 75 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬
∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏)) |
77 | 76 | ralrimivw 3104 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑏 ∈ (Fmla‘𝑁) ¬
∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏)) |
78 | 77 | ralrimivw 3104 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏)) |
79 | 22 | olcd 871 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎)) |
80 | | ianor 979 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝑖 = 𝑗 ∧ 𝑢 = 𝑎) ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎)) |
81 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑖 ∈ V |
82 | 81, 25 | opth 5391 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉 ↔ (𝑖 = 𝑗 ∧ 𝑢 = 𝑎)) |
83 | 80, 82 | xchnxbir 333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉 ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎)) |
84 | 79, 83 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉) |
85 | 84 | olcd 871 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 2o =
2o ∨ ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) |
86 | | ianor 979 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(2o = 2o ∧ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉) ↔ (¬ 2o =
2o ∨ ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) |
87 | | 2oex 8308 |
. . . . . . . . . . . . . . . . . . . 20
⊢
2o ∈ V |
88 | | opex 5379 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈𝑖, 𝑢〉 ∈ V |
89 | 87, 88 | opth 5391 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈2o, 〈𝑖, 𝑢〉〉 = 〈2o,
〈𝑗, 𝑎〉〉 ↔ (2o =
2o ∧ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) |
90 | 86, 89 | xchnxbir 333 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
〈2o, 〈𝑖, 𝑢〉〉 = 〈2o,
〈𝑗, 𝑎〉〉 ↔ (¬ 2o =
2o ∨ ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) |
91 | | df-goal 33304 |
. . . . . . . . . . . . . . . . . . 19
⊢
∀𝑔𝑖𝑢 = 〈2o, 〈𝑖, 𝑢〉〉 |
92 | | df-goal 33304 |
. . . . . . . . . . . . . . . . . . 19
⊢
∀𝑔𝑗𝑎 = 〈2o, 〈𝑗, 𝑎〉〉 |
93 | 91, 92 | eqeq12i 2756 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ 〈2o, 〈𝑖, 𝑢〉〉 = 〈2o,
〈𝑗, 𝑎〉〉) |
94 | 90, 93 | xchnxbir 333 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ (¬ 2o = 2o
∨ ¬ 〈𝑖, 𝑢〉 = 〈𝑗, 𝑎〉)) |
95 | 85, 94 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) |
96 | 95 | ralrimivw 3104 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) |
97 | 96 | ralrimiva 3103 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) |
98 | 97 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) |
99 | 98 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) |
100 | | r19.26 3095 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
(Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) |
101 | 78, 99, 100 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) |
102 | 73, 101 | jca 512 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))) |
103 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁))) |
104 | 103 | notbid 318 |
. . . . . . . . . . . 12
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁))) |
105 | | eqeq1 2742 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ↔ 𝑓 = (𝑎⊼𝑔𝑏))) |
106 | 105 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (¬
∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ↔ ¬ 𝑓 = (𝑎⊼𝑔𝑏))) |
107 | 106 | ralbidv 3112 |
. . . . . . . . . . . . . 14
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏))) |
108 | | eqeq1 2742 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ 𝑓 = ∀𝑔𝑗𝑎)) |
109 | 108 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎)) |
110 | 109 | ralbidv 3112 |
. . . . . . . . . . . . . 14
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) |
111 | 107, 110 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢
(∀𝑔𝑖𝑢 = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) |
112 | 111 | ralbidv 3112 |
. . . . . . . . . . . 12
⊢
(∀𝑔𝑖𝑢 = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) |
113 | 104, 112 | anbi12d 631 |
. . . . . . . . . . 11
⊢
(∀𝑔𝑖𝑢 = 𝑓 → ((¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
114 | 113 | eqcoms 2746 |
. . . . . . . . . 10
⊢ (𝑓 =
∀𝑔𝑖𝑢 → ((¬
∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬
∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
115 | 102, 114 | syl5ibcom 244 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
116 | 115 | rexlimdva 3213 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑖 ∈ ω 𝑓 =
∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
117 | 67, 116 | jaod 856 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
118 | 117 | rexlimdva 3213 |
. . . . . 6
⊢ (𝑁 ∈ ω →
(∃𝑢 ∈
((Fmla‘suc 𝑁) ∖
(Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
119 | | elndif 4063 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ (Fmla‘𝑁) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) |
120 | 119 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) |
121 | 120 | intnand 489 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))) |
122 | 11, 121 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ω ∧ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))) |
123 | 122 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ω → ((𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))) |
124 | 123 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁))) |
125 | 124 | impl 456 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁)) |
126 | | elneeldif 3901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑏 ≠ 𝑣) |
127 | 126 | necomd 2999 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑣 ≠ 𝑏) |
128 | 127 | ancoms 459 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → 𝑣 ≠ 𝑏) |
129 | 128 | neneqd 2948 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 𝑣 = 𝑏) |
130 | 129 | olcd 871 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏)) |
131 | 130, 28 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉) |
132 | 131 | intnand 489 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (1o =
1o ∧ 〈𝑢, 𝑣〉 = 〈𝑎, 𝑏〉)) |
133 | 132, 40 | sylnibr 329 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
134 | 133 | ralrimiva 3103 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
135 | 134 | ralrimivw 3104 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
136 | 135 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏)) |
137 | 48 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) |
138 | 137 | ralrimivw 3104 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) |
139 | 138 | ralrimivw 3104 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) |
140 | 136, 139,
52 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) |
141 | 125, 140 | jca 512 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎))) |
142 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁))) |
143 | 142 | notbid 318 |
. . . . . . . . . . 11
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁))) |
144 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ 𝑓 = (𝑎⊼𝑔𝑏))) |
145 | 144 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ ¬ 𝑓 = (𝑎⊼𝑔𝑏))) |
146 | 145 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏))) |
147 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ 𝑓 = ∀𝑔𝑗𝑎)) |
148 | 147 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎)) |
149 | 148 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) |
150 | 146, 149 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) |
151 | 150 | ralbidv 3112 |
. . . . . . . . . . 11
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) |
152 | 143, 151 | anbi12d 631 |
. . . . . . . . . 10
⊢ ((𝑢⊼𝑔𝑣) = 𝑓 → ((¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
153 | 152 | eqcoms 2746 |
. . . . . . . . 9
⊢ (𝑓 = (𝑢⊼𝑔𝑣) → ((¬ (𝑢⊼𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢⊼𝑔𝑣) = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢⊼𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
154 | 141, 153 | syl5ibcom 244 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
155 | 154 | rexlimdva 3213 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
156 | 155 | rexlimdva 3213 |
. . . . . 6
⊢ (𝑁 ∈ ω →
(∃𝑢 ∈
(Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
157 | 118, 156 | jaod 856 |
. . . . 5
⊢ (𝑁 ∈ ω →
((∃𝑢 ∈
((Fmla‘suc 𝑁) ∖
(Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣)) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
158 | | isfmlasuc 33350 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑓 ∈ V) → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))) |
159 | 158 | elvd 3439 |
. . . . . . 7
⊢ (𝑁 ∈ ω → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))) |
160 | 159 | notbid 318 |
. . . . . 6
⊢ (𝑁 ∈ ω → (¬
𝑓 ∈ (Fmla‘suc
𝑁) ↔ ¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))) |
161 | | ioran 981 |
. . . . . . 7
⊢ (¬
(𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))) |
162 | | ralnex 3167 |
. . . . . . . . . . . 12
⊢
(∀𝑏 ∈
(Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ↔ ¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏)) |
163 | | ralnex 3167 |
. . . . . . . . . . . 12
⊢
(∀𝑗 ∈
ω ¬ 𝑓 =
∀𝑔𝑗𝑎 ↔ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) |
164 | 162, 163 | anbi12i 627 |
. . . . . . . . . . 11
⊢
((∀𝑏 ∈
(Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) |
165 | | ioran 981 |
. . . . . . . . . . 11
⊢ (¬
(∃𝑏 ∈
(Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) |
166 | 164, 165 | bitr4i 277 |
. . . . . . . . . 10
⊢
((∀𝑏 ∈
(Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) |
167 | 166 | ralbii 3092 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
(Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) |
168 | | ralnex 3167 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
(Fmla‘𝑁) ¬
(∃𝑏 ∈
(Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) |
169 | 167, 168 | bitr2i 275 |
. . . . . . . 8
⊢ (¬
∃𝑎 ∈
(Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) |
170 | 169 | anbi2i 623 |
. . . . . . 7
⊢ ((¬
𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) |
171 | 161, 170 | bitri 274 |
. . . . . 6
⊢ (¬
(𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎⊼𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))) |
172 | 160, 171 | bitrdi 287 |
. . . . 5
⊢ (𝑁 ∈ ω → (¬
𝑓 ∈ (Fmla‘suc
𝑁) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎⊼𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))) |
173 | 157, 172 | sylibrd 258 |
. . . 4
⊢ (𝑁 ∈ ω →
((∃𝑢 ∈
((Fmla‘suc 𝑁) ∖
(Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢⊼𝑔𝑣)) → ¬ 𝑓 ∈ (Fmla‘suc 𝑁))) |
174 | 10, 173 | syl5bi 241 |
. . 3
⊢ (𝑁 ∈ ω → (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))} → ¬ 𝑓 ∈ (Fmla‘suc 𝑁))) |
175 | 174 | ralrimiv 3102 |
. 2
⊢ (𝑁 ∈ ω →
∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁)) |
176 | | disjr 4383 |
. 2
⊢
(((Fmla‘suc 𝑁)
∩ {𝑥 ∣
(∃𝑢 ∈
((Fmla‘suc 𝑁) ∖
(Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))}) = ∅ ↔ ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁)) |
177 | 175, 176 | sylibr 233 |
1
⊢ (𝑁 ∈ ω →
((Fmla‘suc 𝑁) ∩
{𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))}) = ∅) |