Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasucdisj Structured version   Visualization version   GIF version

Theorem fmlasucdisj 33261
Description: The valid Godel formulas of height (𝑁 + 1) is disjoint with the difference ((Fmla‘suc suc 𝑁) ∖ (Fmla‘suc 𝑁)), expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmlasucdisj (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Distinct variable group:   𝑖,𝑁,𝑢,𝑣,𝑥

Proof of Theorem fmlasucdisj
Dummy variables 𝑎 𝑏 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . 5 𝑓 ∈ V
2 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = (𝑢𝑔𝑣) ↔ 𝑓 = (𝑢𝑔𝑣)))
32rexbidv 3225 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣)))
4 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ∀𝑔𝑖𝑢𝑓 = ∀𝑔𝑖𝑢))
54rexbidv 3225 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))
63, 5orbi12d 915 . . . . . . 7 (𝑥 = 𝑓 → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
76rexbidv 3225 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
822rexbidv 3228 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
97, 8orbi12d 915 . . . . 5 (𝑥 = 𝑓 → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣)) ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣))))
101, 9elab 3602 . . . 4 (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
11 gonar 33257 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)))
12 elndif 4059 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1312adantr 480 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1413intnanrd 489 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1511, 14syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1615ex 412 . . . . . . . . . . . . 13 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))))
1716con2d 134 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
1817impl 455 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
19 elneeldif 3897 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑎𝑢)
2019necomd 2998 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑢𝑎)
2120ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → 𝑢𝑎)
2221neneqd 2947 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 𝑢 = 𝑎)
2322orcd 869 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
24 ianor 978 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑢 = 𝑎𝑣 = 𝑏) ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
25 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑢 ∈ V
26 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
2725, 26opth 5385 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (𝑢 = 𝑎𝑣 = 𝑏))
2824, 27xchnxbir 332 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
2923, 28sylibr 233 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
3029olcd 870 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
31 ianor 978 . . . . . . . . . . . . . . . . . 18 (¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
32 gonafv 33212 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
3332el2v 3430 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
34 gonafv 33212 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
3534el2v 3430 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
3633, 35eqeq12i 2756 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
37 1oex 8280 . . . . . . . . . . . . . . . . . . . 20 1o ∈ V
38 opex 5373 . . . . . . . . . . . . . . . . . . . 20 𝑢, 𝑣⟩ ∈ V
3937, 38opth 5385 . . . . . . . . . . . . . . . . . . 19 (⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩ ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4036, 39bitri 274 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4131, 40xchnxbir 332 . . . . . . . . . . . . . . . . 17 (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4230, 41sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4342ralrimivw 3108 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4443ralrimiva 3107 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4544adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4645adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
47 gonanegoal 33214 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑗𝑎
4847neii 2944 . . . . . . . . . . . . . . 15 ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎
4948a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5049ralrimivw 3108 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5150ralrimivw 3108 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
52 r19.26 3094 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5346, 51, 52sylanbrc 582 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5418, 53jca 511 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
55 eleq1 2826 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → (𝑓 ∈ (Fmla‘𝑁) ↔ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
5655notbid 317 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ↔ ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
57 eqeq1 2742 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = (𝑎𝑔𝑏) ↔ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5857notbid 317 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5958ralbidv 3120 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
60 eqeq1 2742 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = ∀𝑔𝑗𝑎 ↔ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6160notbid 317 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6261ralbidv 3120 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6359, 62anbi12d 630 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6463ralbidv 3120 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6556, 64anbi12d 630 . . . . . . . . . 10 (𝑓 = (𝑢𝑔𝑣) → ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))))
6654, 65syl5ibrcom 246 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
6766rexlimdva 3212 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
68 goalr 33259 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → 𝑢 ∈ (Fmla‘𝑁))
6968, 12syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
7069ex 412 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
7170con2d 134 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)))
7271imp 406 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
7372adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
74 gonanegoal 33214 . . . . . . . . . . . . . . . 16 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
7574nesymi 3000 . . . . . . . . . . . . . . 15 ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏)
7675a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7776ralrimivw 3108 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7877ralrimivw 3108 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7922olcd 870 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
80 ianor 978 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑖 = 𝑗𝑢 = 𝑎) ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
81 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
8281, 25opth 5385 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (𝑖 = 𝑗𝑢 = 𝑎))
8380, 82xchnxbir 332 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
8479, 83sylibr 233 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩)
8584olcd 870 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
86 ianor 978 . . . . . . . . . . . . . . . . . . 19 (¬ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩) ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
87 2oex 8284 . . . . . . . . . . . . . . . . . . . 20 2o ∈ V
88 opex 5373 . . . . . . . . . . . . . . . . . . . 20 𝑖, 𝑢⟩ ∈ V
8987, 88opth 5385 . . . . . . . . . . . . . . . . . . 19 (⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9086, 89xchnxbir 332 . . . . . . . . . . . . . . . . . 18 (¬ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
91 df-goal 33204 . . . . . . . . . . . . . . . . . . 19 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
92 df-goal 33204 . . . . . . . . . . . . . . . . . . 19 𝑔𝑗𝑎 = ⟨2o, ⟨𝑗, 𝑎⟩⟩
9391, 92eqeq12i 2756 . . . . . . . . . . . . . . . . . 18 (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩)
9490, 93xchnxbir 332 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9585, 94sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9695ralrimivw 3108 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9796ralrimiva 3107 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9897adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9998adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
100 r19.26 3094 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10178, 99, 100sylanbrc 582 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10273, 101jca 511 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)))
103 eleq1 2826 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
104103notbid 317 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
105 eqeq1 2742 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
106105notbid 317 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
107106ralbidv 3120 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
108 eqeq1 2742 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
109108notbid 317 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
110109ralbidv 3120 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
111107, 110anbi12d 630 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
112111ralbidv 3120 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
113104, 112anbi12d 630 . . . . . . . . . . 11 (∀𝑔𝑖𝑢 = 𝑓 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
114113eqcoms 2746 . . . . . . . . . 10 (𝑓 = ∀𝑔𝑖𝑢 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
115102, 114syl5ibcom 244 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
116115rexlimdva 3212 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
11767, 116jaod 855 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
118117rexlimdva 3212 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
119 elndif 4059 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (Fmla‘𝑁) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
120119adantl 481 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
121120intnand 488 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
12211, 121syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
123122ex 412 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))))
124123con2d 134 . . . . . . . . . . 11 (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
125124impl 455 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
126 elneeldif 3897 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑏𝑣)
127126necomd 2998 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑣𝑏)
128127ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → 𝑣𝑏)
129128neneqd 2947 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 𝑣 = 𝑏)
130129olcd 870 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
131130, 28sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
132131intnand 488 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
133132, 40sylnibr 328 . . . . . . . . . . . . . 14 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
134133ralrimiva 3107 . . . . . . . . . . . . 13 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
135134ralrimivw 3108 . . . . . . . . . . . 12 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
136135adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
13748a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
138137ralrimivw 3108 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
139138ralrimivw 3108 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
140136, 139, 52sylanbrc 582 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
141125, 140jca 511 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
142 eleq1 2826 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
143142notbid 317 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
144 eqeq1 2742 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
145144notbid 317 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
146145ralbidv 3120 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
147 eqeq1 2742 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
148147notbid 317 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
149148ralbidv 3120 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
150146, 149anbi12d 630 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
151150ralbidv 3120 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
152143, 151anbi12d 630 . . . . . . . . . 10 ((𝑢𝑔𝑣) = 𝑓 → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
153152eqcoms 2746 . . . . . . . . 9 (𝑓 = (𝑢𝑔𝑣) → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
154141, 153syl5ibcom 244 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
155154rexlimdva 3212 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
156155rexlimdva 3212 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
157118, 156jaod 855 . . . . 5 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
158 isfmlasuc 33250 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑓 ∈ V) → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
159158elvd 3429 . . . . . . 7 (𝑁 ∈ ω → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
160159notbid 317 . . . . . 6 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ ¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
161 ioran 980 . . . . . . 7 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))
162 ralnex 3163 . . . . . . . . . . . 12 (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏))
163 ralnex 3163 . . . . . . . . . . . 12 (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)
164162, 163anbi12i 626 . . . . . . . . . . 11 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
165 ioran 980 . . . . . . . . . . 11 (¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
166164, 165bitr4i 277 . . . . . . . . . 10 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
167166ralbii 3090 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
168 ralnex 3163 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
169167, 168bitr2i 275 . . . . . . . 8 (¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
170169anbi2i 622 . . . . . . 7 ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
171161, 170bitri 274 . . . . . 6 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
172160, 171bitrdi 286 . . . . 5 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
173157, 172sylibrd 258 . . . 4 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
17410, 173syl5bi 241 . . 3 (𝑁 ∈ ω → (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
175174ralrimiv 3106 . 2 (𝑁 ∈ ω → ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
176 disjr 4380 . 2 (((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅ ↔ ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
177175, 176sylibr 233 1 (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cin 3882  c0 4253  cop 4564  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  1oc1o 8260  2oc2o 8261  𝑔cgna 33196  𝑔cgol 33197  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-map 8575  df-goel 33202  df-gona 33203  df-goal 33204  df-sat 33205  df-fmla 33207
This theorem is referenced by:  satffunlem2lem2  33268
  Copyright terms: Public domain W3C validator