Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasucdisj Structured version   Visualization version   GIF version

Theorem fmlasucdisj 35393
Description: The valid Godel formulas of height (𝑁 + 1) is disjoint with the difference ((Fmla‘suc suc 𝑁) ∖ (Fmla‘suc 𝑁)), expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmlasucdisj (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Distinct variable group:   𝑖,𝑁,𝑢,𝑣,𝑥

Proof of Theorem fmlasucdisj
Dummy variables 𝑎 𝑏 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . 5 𝑓 ∈ V
2 eqeq1 2734 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = (𝑢𝑔𝑣) ↔ 𝑓 = (𝑢𝑔𝑣)))
32rexbidv 3158 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣)))
4 eqeq1 2734 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ∀𝑔𝑖𝑢𝑓 = ∀𝑔𝑖𝑢))
54rexbidv 3158 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))
63, 5orbi12d 918 . . . . . . 7 (𝑥 = 𝑓 → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
76rexbidv 3158 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
822rexbidv 3203 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
97, 8orbi12d 918 . . . . 5 (𝑥 = 𝑓 → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣)) ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣))))
101, 9elab 3649 . . . 4 (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
11 gonar 35389 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)))
12 elndif 4099 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1312adantr 480 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1413intnanrd 489 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1511, 14syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1615ex 412 . . . . . . . . . . . . 13 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))))
1716con2d 134 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
1817impl 455 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
19 elneeldif 3931 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑎𝑢)
2019necomd 2981 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑢𝑎)
2120ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → 𝑢𝑎)
2221neneqd 2931 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 𝑢 = 𝑎)
2322orcd 873 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
24 ianor 983 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑢 = 𝑎𝑣 = 𝑏) ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
25 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑢 ∈ V
26 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
2725, 26opth 5439 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (𝑢 = 𝑎𝑣 = 𝑏))
2824, 27xchnxbir 333 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
2923, 28sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
3029olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
31 ianor 983 . . . . . . . . . . . . . . . . . 18 (¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
32 gonafv 35344 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
3332el2v 3457 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
34 gonafv 35344 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
3534el2v 3457 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
3633, 35eqeq12i 2748 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
37 1oex 8447 . . . . . . . . . . . . . . . . . . . 20 1o ∈ V
38 opex 5427 . . . . . . . . . . . . . . . . . . . 20 𝑢, 𝑣⟩ ∈ V
3937, 38opth 5439 . . . . . . . . . . . . . . . . . . 19 (⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩ ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4036, 39bitri 275 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4131, 40xchnxbir 333 . . . . . . . . . . . . . . . . 17 (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4230, 41sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4342ralrimivw 3130 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4443ralrimiva 3126 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4544adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4645adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
47 gonanegoal 35346 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑗𝑎
4847neii 2928 . . . . . . . . . . . . . . 15 ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎
4948a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5049ralrimivw 3130 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5150ralrimivw 3130 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
52 r19.26 3092 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5346, 51, 52sylanbrc 583 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5418, 53jca 511 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
55 eleq1 2817 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → (𝑓 ∈ (Fmla‘𝑁) ↔ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
5655notbid 318 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ↔ ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
57 eqeq1 2734 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = (𝑎𝑔𝑏) ↔ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5857notbid 318 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5958ralbidv 3157 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
60 eqeq1 2734 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = ∀𝑔𝑗𝑎 ↔ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6160notbid 318 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6261ralbidv 3157 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6359, 62anbi12d 632 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6463ralbidv 3157 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6556, 64anbi12d 632 . . . . . . . . . 10 (𝑓 = (𝑢𝑔𝑣) → ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))))
6654, 65syl5ibrcom 247 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
6766rexlimdva 3135 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
68 goalr 35391 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → 𝑢 ∈ (Fmla‘𝑁))
6968, 12syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
7069ex 412 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
7170con2d 134 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)))
7271imp 406 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
7372adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
74 gonanegoal 35346 . . . . . . . . . . . . . . . 16 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
7574nesymi 2983 . . . . . . . . . . . . . . 15 ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏)
7675a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7776ralrimivw 3130 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7877ralrimivw 3130 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7922olcd 874 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
80 ianor 983 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑖 = 𝑗𝑢 = 𝑎) ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
81 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
8281, 25opth 5439 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (𝑖 = 𝑗𝑢 = 𝑎))
8380, 82xchnxbir 333 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
8479, 83sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩)
8584olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
86 ianor 983 . . . . . . . . . . . . . . . . . . 19 (¬ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩) ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
87 2oex 8448 . . . . . . . . . . . . . . . . . . . 20 2o ∈ V
88 opex 5427 . . . . . . . . . . . . . . . . . . . 20 𝑖, 𝑢⟩ ∈ V
8987, 88opth 5439 . . . . . . . . . . . . . . . . . . 19 (⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9086, 89xchnxbir 333 . . . . . . . . . . . . . . . . . 18 (¬ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
91 df-goal 35336 . . . . . . . . . . . . . . . . . . 19 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
92 df-goal 35336 . . . . . . . . . . . . . . . . . . 19 𝑔𝑗𝑎 = ⟨2o, ⟨𝑗, 𝑎⟩⟩
9391, 92eqeq12i 2748 . . . . . . . . . . . . . . . . . 18 (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩)
9490, 93xchnxbir 333 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9585, 94sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9695ralrimivw 3130 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9796ralrimiva 3126 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9897adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9998adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
100 r19.26 3092 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10178, 99, 100sylanbrc 583 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10273, 101jca 511 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)))
103 eleq1 2817 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
104103notbid 318 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
105 eqeq1 2734 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
106105notbid 318 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
107106ralbidv 3157 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
108 eqeq1 2734 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
109108notbid 318 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
110109ralbidv 3157 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
111107, 110anbi12d 632 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
112111ralbidv 3157 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
113104, 112anbi12d 632 . . . . . . . . . . 11 (∀𝑔𝑖𝑢 = 𝑓 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
114113eqcoms 2738 . . . . . . . . . 10 (𝑓 = ∀𝑔𝑖𝑢 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
115102, 114syl5ibcom 245 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
116115rexlimdva 3135 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
11767, 116jaod 859 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
118117rexlimdva 3135 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
119 elndif 4099 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (Fmla‘𝑁) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
120119adantl 481 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
121120intnand 488 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
12211, 121syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
123122ex 412 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))))
124123con2d 134 . . . . . . . . . . 11 (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
125124impl 455 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
126 elneeldif 3931 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑏𝑣)
127126necomd 2981 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑣𝑏)
128127ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → 𝑣𝑏)
129128neneqd 2931 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 𝑣 = 𝑏)
130129olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
131130, 28sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
132131intnand 488 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
133132, 40sylnibr 329 . . . . . . . . . . . . . 14 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
134133ralrimiva 3126 . . . . . . . . . . . . 13 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
135134ralrimivw 3130 . . . . . . . . . . . 12 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
136135adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
13748a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
138137ralrimivw 3130 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
139138ralrimivw 3130 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
140136, 139, 52sylanbrc 583 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
141125, 140jca 511 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
142 eleq1 2817 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
143142notbid 318 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
144 eqeq1 2734 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
145144notbid 318 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
146145ralbidv 3157 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
147 eqeq1 2734 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
148147notbid 318 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
149148ralbidv 3157 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
150146, 149anbi12d 632 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
151150ralbidv 3157 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
152143, 151anbi12d 632 . . . . . . . . . 10 ((𝑢𝑔𝑣) = 𝑓 → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
153152eqcoms 2738 . . . . . . . . 9 (𝑓 = (𝑢𝑔𝑣) → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
154141, 153syl5ibcom 245 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
155154rexlimdva 3135 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
156155rexlimdva 3135 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
157118, 156jaod 859 . . . . 5 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
158 isfmlasuc 35382 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑓 ∈ V) → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
159158elvd 3456 . . . . . . 7 (𝑁 ∈ ω → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
160159notbid 318 . . . . . 6 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ ¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
161 ioran 985 . . . . . . 7 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))
162 ralnex 3056 . . . . . . . . . . . 12 (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏))
163 ralnex 3056 . . . . . . . . . . . 12 (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)
164162, 163anbi12i 628 . . . . . . . . . . 11 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
165 ioran 985 . . . . . . . . . . 11 (¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
166164, 165bitr4i 278 . . . . . . . . . 10 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
167166ralbii 3076 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
168 ralnex 3056 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
169167, 168bitr2i 276 . . . . . . . 8 (¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
170169anbi2i 623 . . . . . . 7 ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
171161, 170bitri 275 . . . . . 6 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
172160, 171bitrdi 287 . . . . 5 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
173157, 172sylibrd 259 . . . 4 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
17410, 173biimtrid 242 . . 3 (𝑁 ∈ ω → (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
175174ralrimiv 3125 . 2 (𝑁 ∈ ω → ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
176 disjr 4417 . 2 (((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅ ↔ ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
177175, 176sylibr 234 1 (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cin 3916  c0 4299  cop 4598  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  1oc1o 8430  2oc2o 8431  𝑔cgna 35328  𝑔cgol 35329  Fmlacfmla 35331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-map 8804  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-fmla 35339
This theorem is referenced by:  satffunlem2lem2  35400
  Copyright terms: Public domain W3C validator