Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasucdisj Structured version   Visualization version   GIF version

Theorem fmlasucdisj 32870
 Description: The valid Godel formulas of height (𝑁 + 1) is disjoint with the difference ((Fmla‘suc suc 𝑁) ∖ (Fmla‘suc 𝑁)), expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmlasucdisj (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Distinct variable group:   𝑖,𝑁,𝑢,𝑣,𝑥

Proof of Theorem fmlasucdisj
Dummy variables 𝑎 𝑏 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3414 . . . . 5 𝑓 ∈ V
2 eqeq1 2763 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = (𝑢𝑔𝑣) ↔ 𝑓 = (𝑢𝑔𝑣)))
32rexbidv 3222 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣)))
4 eqeq1 2763 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ∀𝑔𝑖𝑢𝑓 = ∀𝑔𝑖𝑢))
54rexbidv 3222 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))
63, 5orbi12d 917 . . . . . . 7 (𝑥 = 𝑓 → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
76rexbidv 3222 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
822rexbidv 3225 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
97, 8orbi12d 917 . . . . 5 (𝑥 = 𝑓 → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣)) ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣))))
101, 9elab 3589 . . . 4 (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
11 gonar 32866 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)))
12 elndif 4035 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1312adantr 485 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1413intnanrd 494 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1511, 14syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1615ex 417 . . . . . . . . . . . . 13 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))))
1716con2d 136 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
1817impl 460 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
19 elneeldif 3873 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑎𝑢)
2019necomd 3007 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑢𝑎)
2120ancoms 463 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → 𝑢𝑎)
2221neneqd 2957 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 𝑢 = 𝑎)
2322orcd 871 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
24 ianor 980 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑢 = 𝑎𝑣 = 𝑏) ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
25 vex 3414 . . . . . . . . . . . . . . . . . . . . 21 𝑢 ∈ V
26 vex 3414 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
2725, 26opth 5337 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (𝑢 = 𝑎𝑣 = 𝑏))
2824, 27xchnxbir 337 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
2923, 28sylibr 237 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
3029olcd 872 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
31 ianor 980 . . . . . . . . . . . . . . . . . 18 (¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
32 gonafv 32821 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
3332el2v 3418 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
34 gonafv 32821 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
3534el2v 3418 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
3633, 35eqeq12i 2774 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
37 1oex 8121 . . . . . . . . . . . . . . . . . . . 20 1o ∈ V
38 opex 5325 . . . . . . . . . . . . . . . . . . . 20 𝑢, 𝑣⟩ ∈ V
3937, 38opth 5337 . . . . . . . . . . . . . . . . . . 19 (⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩ ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4036, 39bitri 278 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4131, 40xchnxbir 337 . . . . . . . . . . . . . . . . 17 (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4230, 41sylibr 237 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4342ralrimivw 3115 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4443ralrimiva 3114 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4544adantl 486 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4645adantr 485 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
47 gonanegoal 32823 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑗𝑎
4847neii 2954 . . . . . . . . . . . . . . 15 ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎
4948a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5049ralrimivw 3115 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5150ralrimivw 3115 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
52 r19.26 3102 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5346, 51, 52sylanbrc 587 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5418, 53jca 516 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
55 eleq1 2840 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → (𝑓 ∈ (Fmla‘𝑁) ↔ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
5655notbid 322 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ↔ ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
57 eqeq1 2763 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = (𝑎𝑔𝑏) ↔ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5857notbid 322 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5958ralbidv 3127 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
60 eqeq1 2763 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = ∀𝑔𝑗𝑎 ↔ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6160notbid 322 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6261ralbidv 3127 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6359, 62anbi12d 634 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6463ralbidv 3127 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6556, 64anbi12d 634 . . . . . . . . . 10 (𝑓 = (𝑢𝑔𝑣) → ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))))
6654, 65syl5ibrcom 250 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
6766rexlimdva 3209 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
68 goalr 32868 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → 𝑢 ∈ (Fmla‘𝑁))
6968, 12syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
7069ex 417 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
7170con2d 136 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)))
7271imp 411 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
7372adantr 485 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
74 gonanegoal 32823 . . . . . . . . . . . . . . . 16 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
7574nesymi 3009 . . . . . . . . . . . . . . 15 ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏)
7675a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7776ralrimivw 3115 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7877ralrimivw 3115 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7922olcd 872 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
80 ianor 980 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑖 = 𝑗𝑢 = 𝑎) ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
81 vex 3414 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
8281, 25opth 5337 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (𝑖 = 𝑗𝑢 = 𝑎))
8380, 82xchnxbir 337 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
8479, 83sylibr 237 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩)
8584olcd 872 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
86 ianor 980 . . . . . . . . . . . . . . . . . . 19 (¬ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩) ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
87 2oex 8123 . . . . . . . . . . . . . . . . . . . 20 2o ∈ V
88 opex 5325 . . . . . . . . . . . . . . . . . . . 20 𝑖, 𝑢⟩ ∈ V
8987, 88opth 5337 . . . . . . . . . . . . . . . . . . 19 (⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9086, 89xchnxbir 337 . . . . . . . . . . . . . . . . . 18 (¬ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
91 df-goal 32813 . . . . . . . . . . . . . . . . . . 19 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
92 df-goal 32813 . . . . . . . . . . . . . . . . . . 19 𝑔𝑗𝑎 = ⟨2o, ⟨𝑗, 𝑎⟩⟩
9391, 92eqeq12i 2774 . . . . . . . . . . . . . . . . . 18 (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩)
9490, 93xchnxbir 337 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9585, 94sylibr 237 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9695ralrimivw 3115 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9796ralrimiva 3114 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9897adantl 486 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9998adantr 485 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
100 r19.26 3102 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10178, 99, 100sylanbrc 587 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10273, 101jca 516 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)))
103 eleq1 2840 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
104103notbid 322 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
105 eqeq1 2763 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
106105notbid 322 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
107106ralbidv 3127 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
108 eqeq1 2763 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
109108notbid 322 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
110109ralbidv 3127 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
111107, 110anbi12d 634 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
112111ralbidv 3127 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
113104, 112anbi12d 634 . . . . . . . . . . 11 (∀𝑔𝑖𝑢 = 𝑓 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
114113eqcoms 2767 . . . . . . . . . 10 (𝑓 = ∀𝑔𝑖𝑢 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
115102, 114syl5ibcom 248 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
116115rexlimdva 3209 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
11767, 116jaod 857 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
118117rexlimdva 3209 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
119 elndif 4035 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (Fmla‘𝑁) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
120119adantl 486 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
121120intnand 493 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
12211, 121syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
123122ex 417 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))))
124123con2d 136 . . . . . . . . . . 11 (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
125124impl 460 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
126 elneeldif 3873 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑏𝑣)
127126necomd 3007 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑣𝑏)
128127ancoms 463 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → 𝑣𝑏)
129128neneqd 2957 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 𝑣 = 𝑏)
130129olcd 872 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
131130, 28sylibr 237 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
132131intnand 493 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
133132, 40sylnibr 333 . . . . . . . . . . . . . 14 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
134133ralrimiva 3114 . . . . . . . . . . . . 13 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
135134ralrimivw 3115 . . . . . . . . . . . 12 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
136135adantl 486 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
13748a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
138137ralrimivw 3115 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
139138ralrimivw 3115 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
140136, 139, 52sylanbrc 587 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
141125, 140jca 516 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
142 eleq1 2840 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
143142notbid 322 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
144 eqeq1 2763 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
145144notbid 322 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
146145ralbidv 3127 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
147 eqeq1 2763 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
148147notbid 322 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
149148ralbidv 3127 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
150146, 149anbi12d 634 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
151150ralbidv 3127 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
152143, 151anbi12d 634 . . . . . . . . . 10 ((𝑢𝑔𝑣) = 𝑓 → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
153152eqcoms 2767 . . . . . . . . 9 (𝑓 = (𝑢𝑔𝑣) → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
154141, 153syl5ibcom 248 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
155154rexlimdva 3209 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
156155rexlimdva 3209 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
157118, 156jaod 857 . . . . 5 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
158 isfmlasuc 32859 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑓 ∈ V) → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
159158elvd 3417 . . . . . . 7 (𝑁 ∈ ω → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
160159notbid 322 . . . . . 6 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ ¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
161 ioran 982 . . . . . . 7 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))
162 ralnex 3164 . . . . . . . . . . . 12 (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏))
163 ralnex 3164 . . . . . . . . . . . 12 (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)
164162, 163anbi12i 630 . . . . . . . . . . 11 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
165 ioran 982 . . . . . . . . . . 11 (¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
166164, 165bitr4i 281 . . . . . . . . . 10 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
167166ralbii 3098 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
168 ralnex 3164 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
169167, 168bitr2i 279 . . . . . . . 8 (¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
170169anbi2i 626 . . . . . . 7 ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
171161, 170bitri 278 . . . . . 6 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
172160, 171bitrdi 290 . . . . 5 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
173157, 172sylibrd 262 . . . 4 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
17410, 173syl5bi 245 . . 3 (𝑁 ∈ ω → (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
175174ralrimiv 3113 . 2 (𝑁 ∈ ω → ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
176 disjr 4347 . 2 (((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅ ↔ ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
177175, 176sylibr 237 1 (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   ∨ wo 845   = wceq 1539   ∈ wcel 2112  {cab 2736   ≠ wne 2952  ∀wral 3071  ∃wrex 3072  Vcvv 3410   ∖ cdif 3856   ∩ cin 3858  ∅c0 4226  ⟨cop 4529  suc csuc 6172  ‘cfv 6336  (class class class)co 7151  ωcom 7580  1oc1o 8106  2oc2o 8107  ⊼𝑔cgna 32805  ∀𝑔cgol 32806  Fmlacfmla 32808 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-map 8419  df-goel 32811  df-gona 32812  df-goal 32813  df-sat 32814  df-fmla 32816 This theorem is referenced by:  satffunlem2lem2  32877
 Copyright terms: Public domain W3C validator