Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasucdisj Structured version   Visualization version   GIF version

Theorem fmlasucdisj 35374
Description: The valid Godel formulas of height (𝑁 + 1) is disjoint with the difference ((Fmla‘suc suc 𝑁) ∖ (Fmla‘suc 𝑁)), expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmlasucdisj (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Distinct variable group:   𝑖,𝑁,𝑢,𝑣,𝑥

Proof of Theorem fmlasucdisj
Dummy variables 𝑎 𝑏 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . 5 𝑓 ∈ V
2 eqeq1 2733 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = (𝑢𝑔𝑣) ↔ 𝑓 = (𝑢𝑔𝑣)))
32rexbidv 3153 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣)))
4 eqeq1 2733 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ∀𝑔𝑖𝑢𝑓 = ∀𝑔𝑖𝑢))
54rexbidv 3153 . . . . . . . 8 (𝑥 = 𝑓 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢))
63, 5orbi12d 918 . . . . . . 7 (𝑥 = 𝑓 → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
76rexbidv 3153 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)))
822rexbidv 3194 . . . . . 6 (𝑥 = 𝑓 → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
97, 8orbi12d 918 . . . . 5 (𝑥 = 𝑓 → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣)) ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣))))
101, 9elab 3637 . . . 4 (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ↔ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)))
11 gonar 35370 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)))
12 elndif 4086 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1312adantr 480 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
1413intnanrd 489 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1511, 14syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)))
1615ex 412 . . . . . . . . . . . . 13 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁))))
1716con2d 134 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
1817impl 455 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
19 elneeldif 3919 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑎𝑢)
2019necomd 2980 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Fmla‘𝑁) ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑢𝑎)
2120ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → 𝑢𝑎)
2221neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ 𝑢 = 𝑎)
2322orcd 873 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
24 ianor 983 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑢 = 𝑎𝑣 = 𝑏) ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
25 vex 3442 . . . . . . . . . . . . . . . . . . . . 21 𝑢 ∈ V
26 vex 3442 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
2725, 26opth 5423 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (𝑢 = 𝑎𝑣 = 𝑏))
2824, 27xchnxbir 333 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩ ↔ (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
2923, 28sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
3029olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
31 ianor 983 . . . . . . . . . . . . . . . . . 18 (¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
32 gonafv 35325 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
3332el2v 3445 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
34 gonafv 35325 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
3534el2v 3445 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
3633, 35eqeq12i 2747 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
37 1oex 8405 . . . . . . . . . . . . . . . . . . . 20 1o ∈ V
38 opex 5411 . . . . . . . . . . . . . . . . . . . 20 𝑢, 𝑣⟩ ∈ V
3937, 38opth 5423 . . . . . . . . . . . . . . . . . . 19 (⟨1o, ⟨𝑢, 𝑣⟩⟩ = ⟨1o, ⟨𝑎, 𝑏⟩⟩ ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4036, 39bitri 275 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4131, 40xchnxbir 333 . . . . . . . . . . . . . . . . 17 (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ (¬ 1o = 1o ∨ ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
4230, 41sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4342ralrimivw 3125 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4443ralrimiva 3121 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4544adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
4645adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
47 gonanegoal 35327 . . . . . . . . . . . . . . . 16 (𝑢𝑔𝑣) ≠ ∀𝑔𝑗𝑎
4847neii 2927 . . . . . . . . . . . . . . 15 ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎
4948a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5049ralrimivw 3125 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
5150ralrimivw 3125 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
52 r19.26 3089 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5346, 51, 52sylanbrc 583 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
5418, 53jca 511 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
55 eleq1 2816 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → (𝑓 ∈ (Fmla‘𝑁) ↔ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
5655notbid 318 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ↔ ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
57 eqeq1 2733 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = (𝑎𝑔𝑏) ↔ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5857notbid 318 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
5958ralbidv 3152 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏)))
60 eqeq1 2733 . . . . . . . . . . . . . . 15 (𝑓 = (𝑢𝑔𝑣) → (𝑓 = ∀𝑔𝑗𝑎 ↔ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6160notbid 318 . . . . . . . . . . . . . 14 (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6261ralbidv 3152 . . . . . . . . . . . . 13 (𝑓 = (𝑢𝑔𝑣) → (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
6359, 62anbi12d 632 . . . . . . . . . . . 12 (𝑓 = (𝑢𝑔𝑣) → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6463ralbidv 3152 . . . . . . . . . . 11 (𝑓 = (𝑢𝑔𝑣) → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
6556, 64anbi12d 632 . . . . . . . . . 10 (𝑓 = (𝑢𝑔𝑣) → ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))))
6654, 65syl5ibrcom 247 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
6766rexlimdva 3130 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
68 goalr 35372 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → 𝑢 ∈ (Fmla‘𝑁))
6968, 12syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
7069ex 412 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) → ¬ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
7170con2d 134 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁)))
7271imp 406 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
7372adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁))
74 gonanegoal 35327 . . . . . . . . . . . . . . . 16 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
7574nesymi 2982 . . . . . . . . . . . . . . 15 ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏)
7675a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7776ralrimivw 3125 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7877ralrimivw 3125 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏))
7922olcd 874 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
80 ianor 983 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑖 = 𝑗𝑢 = 𝑎) ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
81 vex 3442 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
8281, 25opth 5423 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (𝑖 = 𝑗𝑢 = 𝑎))
8380, 82xchnxbir 333 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩ ↔ (¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎))
8479, 83sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩)
8584olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
86 ianor 983 . . . . . . . . . . . . . . . . . . 19 (¬ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩) ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
87 2oex 8406 . . . . . . . . . . . . . . . . . . . 20 2o ∈ V
88 opex 5411 . . . . . . . . . . . . . . . . . . . 20 𝑖, 𝑢⟩ ∈ V
8987, 88opth 5423 . . . . . . . . . . . . . . . . . . 19 (⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9086, 89xchnxbir 333 . . . . . . . . . . . . . . . . . 18 (¬ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩ ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
91 df-goal 35317 . . . . . . . . . . . . . . . . . . 19 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
92 df-goal 35317 . . . . . . . . . . . . . . . . . . 19 𝑔𝑗𝑎 = ⟨2o, ⟨𝑗, 𝑎⟩⟩
9391, 92eqeq12i 2747 . . . . . . . . . . . . . . . . . 18 (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ⟨2o, ⟨𝑖, 𝑢⟩⟩ = ⟨2o, ⟨𝑗, 𝑎⟩⟩)
9490, 93xchnxbir 333 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ (¬ 2o = 2o ∨ ¬ ⟨𝑖, 𝑢⟩ = ⟨𝑗, 𝑎⟩))
9585, 94sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9695ralrimivw 3125 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑎 ∈ (Fmla‘𝑁)) → ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9796ralrimiva 3121 . . . . . . . . . . . . . 14 (𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9897adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
9998adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)
100 r19.26 3089 . . . . . . . . . . . 12 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10178, 99, 100sylanbrc 583 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎))
10273, 101jca 511 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)))
103 eleq1 2816 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
104103notbid 318 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
105 eqeq1 2733 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
106105notbid 318 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
107106ralbidv 3152 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
108 eqeq1 2733 . . . . . . . . . . . . . . . 16 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
109108notbid 318 . . . . . . . . . . . . . . 15 (∀𝑔𝑖𝑢 = 𝑓 → (¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
110109ralbidv 3152 . . . . . . . . . . . . . 14 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
111107, 110anbi12d 632 . . . . . . . . . . . . 13 (∀𝑔𝑖𝑢 = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
112111ralbidv 3152 . . . . . . . . . . . 12 (∀𝑔𝑖𝑢 = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
113104, 112anbi12d 632 . . . . . . . . . . 11 (∀𝑔𝑖𝑢 = 𝑓 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
114113eqcoms 2737 . . . . . . . . . 10 (𝑓 = ∀𝑔𝑖𝑢 → ((¬ ∀𝑔𝑖𝑢 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ ∀𝑔𝑖𝑢 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ ∀𝑔𝑖𝑢 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
115102, 114syl5ibcom 245 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) ∧ 𝑖 ∈ ω) → (𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
116115rexlimdva 3130 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
11767, 116jaod 859 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
118117rexlimdva 3130 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
119 elndif 4086 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (Fmla‘𝑁) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
120119adantl 481 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))
121120intnand 488 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
12211, 121syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))))
123122ex 412 . . . . . . . . . . . 12 (𝑁 ∈ ω → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) → ¬ (𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)))))
124123con2d 134 . . . . . . . . . . 11 (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁)))
125124impl 455 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁))
126 elneeldif 3919 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑏𝑣)
127126necomd 2980 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ (Fmla‘𝑁) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → 𝑣𝑏)
128127ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → 𝑣𝑏)
129128neneqd 2930 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ 𝑣 = 𝑏)
130129olcd 874 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → (¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏))
131130, 28sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩)
132131intnand 488 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (1o = 1o ∧ ⟨𝑢, 𝑣⟩ = ⟨𝑎, 𝑏⟩))
133132, 40sylnibr 329 . . . . . . . . . . . . . 14 ((𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) ∧ 𝑏 ∈ (Fmla‘𝑁)) → ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
134133ralrimiva 3121 . . . . . . . . . . . . 13 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
135134ralrimivw 3125 . . . . . . . . . . . 12 (𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁)) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
136135adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏))
13748a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
138137ralrimivw 3125 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
139138ralrimivw 3125 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)
140136, 139, 52sylanbrc 583 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎))
141125, 140jca 511 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)))
142 eleq1 2816 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ 𝑓 ∈ (Fmla‘𝑁)))
143142notbid 318 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ↔ ¬ 𝑓 ∈ (Fmla‘𝑁)))
144 eqeq1 2733 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ 𝑓 = (𝑎𝑔𝑏)))
145144notbid 318 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ¬ 𝑓 = (𝑎𝑔𝑏)))
146145ralbidv 3152 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ↔ ∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏)))
147 eqeq1 2733 . . . . . . . . . . . . . . 15 ((𝑢𝑔𝑣) = 𝑓 → ((𝑢𝑔𝑣) = ∀𝑔𝑗𝑎𝑓 = ∀𝑔𝑗𝑎))
148147notbid 318 . . . . . . . . . . . . . 14 ((𝑢𝑔𝑣) = 𝑓 → (¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ¬ 𝑓 = ∀𝑔𝑗𝑎))
149148ralbidv 3152 . . . . . . . . . . . . 13 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎 ↔ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
150146, 149anbi12d 632 . . . . . . . . . . . 12 ((𝑢𝑔𝑣) = 𝑓 → ((∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
151150ralbidv 3152 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = 𝑓 → (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
152143, 151anbi12d 632 . . . . . . . . . 10 ((𝑢𝑔𝑣) = 𝑓 → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
153152eqcoms 2737 . . . . . . . . 9 (𝑓 = (𝑢𝑔𝑣) → ((¬ (𝑢𝑔𝑣) ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ (𝑢𝑔𝑣) = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ (𝑢𝑔𝑣) = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
154141, 153syl5ibcom 245 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))) → (𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
155154rexlimdva 3130 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
156155rexlimdva 3130 . . . . . 6 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
157118, 156jaod 859 . . . . 5 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
158 isfmlasuc 35363 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑓 ∈ V) → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
159158elvd 3444 . . . . . . 7 (𝑁 ∈ ω → (𝑓 ∈ (Fmla‘suc 𝑁) ↔ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
160159notbid 318 . . . . . 6 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ ¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))))
161 ioran 985 . . . . . . 7 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)))
162 ralnex 3055 . . . . . . . . . . . 12 (∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ↔ ¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏))
163 ralnex 3055 . . . . . . . . . . . 12 (∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎 ↔ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)
164162, 163anbi12i 628 . . . . . . . . . . 11 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
165 ioran 985 . . . . . . . . . . 11 (¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ (¬ ∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∧ ¬ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
166164, 165bitr4i 278 . . . . . . . . . 10 ((∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
167166ralbii 3075 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
168 ralnex 3055 . . . . . . . . 9 (∀𝑎 ∈ (Fmla‘𝑁) ¬ (∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎))
169167, 168bitr2i 276 . . . . . . . 8 (¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎) ↔ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))
170169anbi2i 623 . . . . . . 7 ((¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ¬ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
171161, 170bitri 275 . . . . . 6 (¬ (𝑓 ∈ (Fmla‘𝑁) ∨ ∃𝑎 ∈ (Fmla‘𝑁)(∃𝑏 ∈ (Fmla‘𝑁)𝑓 = (𝑎𝑔𝑏) ∨ ∃𝑗 ∈ ω 𝑓 = ∀𝑔𝑗𝑎)) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎)))
172160, 171bitrdi 287 . . . . 5 (𝑁 ∈ ω → (¬ 𝑓 ∈ (Fmla‘suc 𝑁) ↔ (¬ 𝑓 ∈ (Fmla‘𝑁) ∧ ∀𝑎 ∈ (Fmla‘𝑁)(∀𝑏 ∈ (Fmla‘𝑁) ¬ 𝑓 = (𝑎𝑔𝑏) ∧ ∀𝑗 ∈ ω ¬ 𝑓 = ∀𝑔𝑗𝑎))))
173157, 172sylibrd 259 . . . 4 (𝑁 ∈ ω → ((∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑓 = (𝑢𝑔𝑣)) → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
17410, 173biimtrid 242 . . 3 (𝑁 ∈ ω → (𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} → ¬ 𝑓 ∈ (Fmla‘suc 𝑁)))
175174ralrimiv 3120 . 2 (𝑁 ∈ ω → ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
176 disjr 4404 . 2 (((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅ ↔ ∀𝑓 ∈ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))} ¬ 𝑓 ∈ (Fmla‘suc 𝑁))
177175, 176sylibr 234 1 (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢𝑔𝑣))}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  cin 3904  c0 4286  cop 4585  suc csuc 6313  cfv 6486  (class class class)co 7353  ωcom 7806  1oc1o 8388  2oc2o 8389  𝑔cgna 35309  𝑔cgol 35310  Fmlacfmla 35312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-map 8762  df-goel 35315  df-gona 35316  df-goal 35317  df-sat 35318  df-fmla 35320
This theorem is referenced by:  satffunlem2lem2  35381
  Copyright terms: Public domain W3C validator