Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwbi Structured version   Visualization version   GIF version

Theorem elpwbi 40205
Description: Membership in a power set, biconditional. (Contributed by Steven Nguyen, 17-Jul-2022.) (Proof shortened by Steven Nguyen, 16-Sep-2022.)
Hypothesis
Ref Expression
elpwbi.1 𝐵 ∈ V
Assertion
Ref Expression
elpwbi (𝐴𝐵𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwbi
StepHypRef Expression
1 elpwbi.1 . . 3 𝐵 ∈ V
21elpw2 5269 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
32bicomi 223 1 (𝐴𝐵𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  Vcvv 3432  wss 3887  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator