Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwbi Structured version   Visualization version   GIF version

Theorem elpwbi 42223
Description: Membership in a power set, biconditional. (Contributed by Steven Nguyen, 17-Jul-2022.) (Proof shortened by Steven Nguyen, 16-Sep-2022.)
Hypothesis
Ref Expression
elpwbi.1 𝐵 ∈ V
Assertion
Ref Expression
elpwbi (𝐴𝐵𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwbi
StepHypRef Expression
1 elpwbi.1 . . 3 𝐵 ∈ V
21elpw2 5352 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
32bicomi 224 1 (𝐴𝐵𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-pw 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator