Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwbi Structured version   Visualization version   GIF version

Theorem elpwbi 39918
Description: Membership in a power set, biconditional. (Contributed by Steven Nguyen, 17-Jul-2022.) (Proof shortened by Steven Nguyen, 16-Sep-2022.)
Hypothesis
Ref Expression
elpwbi.1 𝐵 ∈ V
Assertion
Ref Expression
elpwbi (𝐴𝐵𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwbi
StepHypRef Expression
1 elpwbi.1 . . 3 𝐵 ∈ V
21elpw2 5238 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
32bicomi 227 1 (𝐴𝐵𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2110  Vcvv 3408  wss 3866  𝒫 cpw 4513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883  df-pw 4515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator