Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
Ref | Expression |
---|---|
elpw2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elpw2g 5272 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 𝒫 cpw 4539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-pw 4541 |
This theorem is referenced by: elpwi2 5274 axpweq 5291 knatar 7224 dffi3 9168 marypha1lem 9170 r1pwss 9543 rankr1bg 9562 pwwf 9566 unwf 9569 rankval2 9577 uniwf 9578 rankpwi 9582 dfac2a 9886 dfac12lem2 9901 axdc4lem 10212 axdclem 10276 incexclem 15546 rpnnen2lem1 15921 rpnnen2lem2 15922 sadfval 16157 smufval 16182 smupf 16183 vdwapf 16671 prdshom 17176 mreacs 17365 acsfn 17366 lubeldm 18069 lubval 18072 glbeldm 18082 glbval 18085 clatlem 18218 clatlubcl2 18220 clatglbcl2 18222 issubm 18440 issubg 18753 cntzval 18925 sylow1lem2 19202 lsmvalx 19242 pj1fval 19298 issubrg 20022 islss 20194 lspval 20235 lspcl 20236 islbs 20336 lbsextlem1 20418 lbsextlem3 20420 lbsextlem4 20421 sraval 20436 ocvval 20870 isobs 20925 islinds 21014 aspval 21075 uncmp 22552 cmpfi 22557 cmpfii 22558 2ndc1stc 22600 1stcrest 22602 hausllycmp 22643 lly1stc 22645 1stckgenlem 22702 txlly 22785 txnlly 22786 tx1stc 22799 basqtop 22860 tgqtop 22861 alexsubALTlem3 23198 alexsubALTlem4 23199 alexsubALT 23200 cncfval 24049 cnllycmp 24117 ovolficcss 24631 ovolval 24635 ovolicc2 24684 ismbl 24688 mblsplit 24694 voliunlem3 24714 vitalilem4 24773 vitalilem5 24774 dvfval 25059 dvnfval 25084 cpnfval 25094 plyval 25352 dmarea 26105 wilthlem2 26216 issh 29566 ocval 29638 spanval 29691 hsupval 29692 sshjval 29708 sshjval3 29712 zarcls 31820 zartopn 31821 sigagensiga 32105 dya2iocuni 32246 coinflippv 32446 ballotlemelo 32450 ballotth 32500 erdszelem1 33149 kur14lem9 33172 kur14 33174 cnllysconn 33203 elmpst 33494 mclsrcl 33519 mclsval 33521 icoreresf 35519 cntotbnd 35950 heibor1lem 35963 heibor 35975 isidl 36168 igenval 36215 paddval 37808 pclvalN 37900 polvalN 37915 docavalN 39133 djavalN 39145 dicval 39186 dochval 39361 djhval 39408 lpolconN 39497 elpwbi 40202 elmzpcl 40545 eldiophb 40576 rpnnen3 40851 islssfgi 40894 hbt 40952 elmnc 40958 itgoval 40983 itgocn 40986 rgspnval 40990 issubmgm 45312 elpglem2 46386 |
Copyright terms: Public domain | W3C validator |