| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| Ref | Expression |
|---|---|
| elpw2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elpw2g 5288 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: elpwi2 5290 axpweq 5306 knatar 7332 dffi3 9382 marypha1lem 9384 r1pwss 9737 rankr1bg 9756 pwwf 9760 unwf 9763 rankval2 9771 uniwf 9772 rankpwi 9776 dfac2a 10083 dfac12lem2 10098 axdc4lem 10408 axdclem 10472 incexclem 15802 rpnnen2lem1 16182 rpnnen2lem2 16183 sadfval 16422 smufval 16447 smupf 16448 vdwapf 16943 prdshom 17430 mreacs 17619 acsfn 17620 lubeldm 18312 lubval 18315 glbeldm 18325 glbval 18328 clatlem 18461 clatlubcl2 18463 clatglbcl2 18465 issubmgm 18629 issubm 18730 issubg 19058 cntzval 19253 sylow1lem2 19529 lsmvalx 19569 pj1fval 19624 issubrng 20456 issubrg 20480 rgspnval 20521 islss 20840 lspval 20881 lspcl 20882 islbs 20983 lbsextlem1 21068 lbsextlem3 21070 lbsextlem4 21071 sraval 21082 ocvval 21576 isobs 21629 islinds 21718 aspval 21782 uncmp 23290 cmpfi 23295 cmpfii 23296 2ndc1stc 23338 1stcrest 23340 hausllycmp 23381 lly1stc 23383 1stckgenlem 23440 txlly 23523 txnlly 23524 tx1stc 23537 basqtop 23598 tgqtop 23599 alexsubALTlem3 23936 alexsubALTlem4 23937 alexsubALT 23938 cncfval 24781 cnllycmp 24855 ovolficcss 25370 ovolval 25374 ovolicc2 25423 ismbl 25427 mblsplit 25433 voliunlem3 25453 vitalilem4 25512 vitalilem5 25513 dvfval 25798 dvnfval 25824 cpnfval 25834 plyval 26098 dmarea 26867 wilthlem2 26979 issh 31137 ocval 31209 spanval 31262 hsupval 31263 sshjval 31279 sshjval3 31283 zarcls 33864 zartopn 33865 sigagensiga 34131 dya2iocuni 34274 coinflippv 34475 ballotlemelo 34479 ballotth 34529 erdszelem1 35178 kur14lem9 35201 kur14 35203 cnllysconn 35232 elmpst 35523 mclsrcl 35548 mclsval 35550 icoreresf 37340 cntotbnd 37790 heibor1lem 37803 heibor 37815 isidl 38008 igenval 38055 paddval 39792 pclvalN 39884 polvalN 39899 docavalN 41117 djavalN 41129 dicval 41170 dochval 41345 djhval 41392 lpolconN 41481 elpwbi 42218 elmzpcl 42714 eldiophb 42745 rpnnen3 43021 islssfgi 43061 hbt 43119 elmnc 43125 itgoval 43150 itgocn 43153 elpglem2 49701 |
| Copyright terms: Public domain | W3C validator |