| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| Ref | Expression |
|---|---|
| elpw2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elpw2g 5290 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 𝒫 cpw 4565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3923 df-ss 3933 df-pw 4567 |
| This theorem is referenced by: elpwi2 5292 axpweq 5308 knatar 7334 dffi3 9388 marypha1lem 9390 r1pwss 9743 rankr1bg 9762 pwwf 9766 unwf 9769 rankval2 9777 uniwf 9778 rankpwi 9782 dfac2a 10089 dfac12lem2 10104 axdc4lem 10414 axdclem 10478 incexclem 15808 rpnnen2lem1 16188 rpnnen2lem2 16189 sadfval 16428 smufval 16453 smupf 16454 vdwapf 16949 prdshom 17436 mreacs 17625 acsfn 17626 lubeldm 18318 lubval 18321 glbeldm 18331 glbval 18334 clatlem 18467 clatlubcl2 18469 clatglbcl2 18471 issubmgm 18635 issubm 18736 issubg 19064 cntzval 19259 sylow1lem2 19535 lsmvalx 19575 pj1fval 19630 issubrng 20462 issubrg 20486 rgspnval 20527 islss 20846 lspval 20887 lspcl 20888 islbs 20989 lbsextlem1 21074 lbsextlem3 21076 lbsextlem4 21077 sraval 21088 ocvval 21582 isobs 21635 islinds 21724 aspval 21788 uncmp 23296 cmpfi 23301 cmpfii 23302 2ndc1stc 23344 1stcrest 23346 hausllycmp 23387 lly1stc 23389 1stckgenlem 23446 txlly 23529 txnlly 23530 tx1stc 23543 basqtop 23604 tgqtop 23605 alexsubALTlem3 23942 alexsubALTlem4 23943 alexsubALT 23944 cncfval 24787 cnllycmp 24861 ovolficcss 25376 ovolval 25380 ovolicc2 25429 ismbl 25433 mblsplit 25439 voliunlem3 25459 vitalilem4 25518 vitalilem5 25519 dvfval 25804 dvnfval 25830 cpnfval 25840 plyval 26104 dmarea 26873 wilthlem2 26985 issh 31143 ocval 31215 spanval 31268 hsupval 31269 sshjval 31285 sshjval3 31289 zarcls 33870 zartopn 33871 sigagensiga 34137 dya2iocuni 34280 coinflippv 34481 ballotlemelo 34485 ballotth 34535 erdszelem1 35178 kur14lem9 35201 kur14 35203 cnllysconn 35232 elmpst 35523 mclsrcl 35548 mclsval 35550 icoreresf 37335 cntotbnd 37785 heibor1lem 37798 heibor 37810 isidl 38003 igenval 38050 paddval 39787 pclvalN 39879 polvalN 39894 docavalN 41112 djavalN 41124 dicval 41165 dochval 41340 djhval 41387 lpolconN 41476 elpwbi 42213 elmzpcl 42707 eldiophb 42738 rpnnen3 43014 islssfgi 43054 hbt 43112 elmnc 43118 itgoval 43143 itgocn 43146 elpglem2 49691 |
| Copyright terms: Public domain | W3C validator |