| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| Ref | Expression |
|---|---|
| elpw2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elpw2g 5269 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2110 Vcvv 3434 ⊆ wss 3900 𝒫 cpw 4548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-in 3907 df-ss 3917 df-pw 4550 |
| This theorem is referenced by: elpwi2 5271 axpweq 5287 knatar 7286 dffi3 9310 marypha1lem 9312 r1pwss 9669 rankr1bg 9688 pwwf 9692 unwf 9695 rankval2 9703 uniwf 9704 rankpwi 9708 dfac2a 10013 dfac12lem2 10028 axdc4lem 10338 axdclem 10402 incexclem 15735 rpnnen2lem1 16115 rpnnen2lem2 16116 sadfval 16355 smufval 16380 smupf 16381 vdwapf 16876 prdshom 17363 mreacs 17556 acsfn 17557 lubeldm 18249 lubval 18252 glbeldm 18262 glbval 18265 clatlem 18400 clatlubcl2 18402 clatglbcl2 18404 issubmgm 18602 issubm 18703 issubg 19031 cntzval 19226 sylow1lem2 19504 lsmvalx 19544 pj1fval 19599 issubrng 20455 issubrg 20479 rgspnval 20520 islss 20860 lspval 20901 lspcl 20902 islbs 21003 lbsextlem1 21088 lbsextlem3 21090 lbsextlem4 21091 sraval 21102 ocvval 21597 isobs 21650 islinds 21739 aspval 21803 uncmp 23311 cmpfi 23316 cmpfii 23317 2ndc1stc 23359 1stcrest 23361 hausllycmp 23402 lly1stc 23404 1stckgenlem 23461 txlly 23544 txnlly 23545 tx1stc 23558 basqtop 23619 tgqtop 23620 alexsubALTlem3 23957 alexsubALTlem4 23958 alexsubALT 23959 cncfval 24801 cnllycmp 24875 ovolficcss 25390 ovolval 25394 ovolicc2 25443 ismbl 25447 mblsplit 25453 voliunlem3 25473 vitalilem4 25532 vitalilem5 25533 dvfval 25818 dvnfval 25844 cpnfval 25854 plyval 26118 dmarea 26887 wilthlem2 26999 issh 31178 ocval 31250 spanval 31303 hsupval 31304 sshjval 31320 sshjval3 31324 zarcls 33877 zartopn 33878 sigagensiga 34144 dya2iocuni 34286 coinflippv 34487 ballotlemelo 34491 ballotth 34541 erdszelem1 35203 kur14lem9 35226 kur14 35228 cnllysconn 35257 elmpst 35548 mclsrcl 35573 mclsval 35575 icoreresf 37365 cntotbnd 37815 heibor1lem 37828 heibor 37840 isidl 38033 igenval 38080 paddval 39816 pclvalN 39908 polvalN 39923 docavalN 41141 djavalN 41153 dicval 41194 dochval 41369 djhval 41416 lpolconN 41505 elpwbi 42242 elmzpcl 42738 eldiophb 42769 rpnnen3 43044 islssfgi 43084 hbt 43142 elmnc 43148 itgoval 43173 itgocn 43176 elpglem2 49723 |
| Copyright terms: Public domain | W3C validator |