![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
Ref | Expression |
---|---|
elpw2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elpw2g 5351 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: elpwi2 5353 axpweq 5369 knatar 7393 dffi3 9500 marypha1lem 9502 r1pwss 9853 rankr1bg 9872 pwwf 9876 unwf 9879 rankval2 9887 uniwf 9888 rankpwi 9892 dfac2a 10199 dfac12lem2 10214 axdc4lem 10524 axdclem 10588 incexclem 15884 rpnnen2lem1 16262 rpnnen2lem2 16263 sadfval 16498 smufval 16523 smupf 16524 vdwapf 17019 prdshom 17527 mreacs 17716 acsfn 17717 lubeldm 18423 lubval 18426 glbeldm 18436 glbval 18439 clatlem 18572 clatlubcl2 18574 clatglbcl2 18576 issubmgm 18740 issubm 18838 issubg 19166 cntzval 19361 sylow1lem2 19641 lsmvalx 19681 pj1fval 19736 issubrng 20573 issubrg 20599 islss 20955 lspval 20996 lspcl 20997 islbs 21098 lbsextlem1 21183 lbsextlem3 21185 lbsextlem4 21186 sraval 21197 ocvval 21708 isobs 21763 islinds 21852 aspval 21916 uncmp 23432 cmpfi 23437 cmpfii 23438 2ndc1stc 23480 1stcrest 23482 hausllycmp 23523 lly1stc 23525 1stckgenlem 23582 txlly 23665 txnlly 23666 tx1stc 23679 basqtop 23740 tgqtop 23741 alexsubALTlem3 24078 alexsubALTlem4 24079 alexsubALT 24080 cncfval 24933 cnllycmp 25007 ovolficcss 25523 ovolval 25527 ovolicc2 25576 ismbl 25580 mblsplit 25586 voliunlem3 25606 vitalilem4 25665 vitalilem5 25666 dvfval 25952 dvnfval 25978 cpnfval 25988 plyval 26252 dmarea 27018 wilthlem2 27130 issh 31240 ocval 31312 spanval 31365 hsupval 31366 sshjval 31382 sshjval3 31386 zarcls 33820 zartopn 33821 sigagensiga 34105 dya2iocuni 34248 coinflippv 34448 ballotlemelo 34452 ballotth 34502 erdszelem1 35159 kur14lem9 35182 kur14 35184 cnllysconn 35213 elmpst 35504 mclsrcl 35529 mclsval 35531 icoreresf 37318 cntotbnd 37756 heibor1lem 37769 heibor 37781 isidl 37974 igenval 38021 paddval 39755 pclvalN 39847 polvalN 39862 docavalN 41080 djavalN 41092 dicval 41133 dochval 41308 djhval 41355 lpolconN 41444 elpwbi 42223 elmzpcl 42682 eldiophb 42713 rpnnen3 42989 islssfgi 43029 hbt 43087 elmnc 43093 itgoval 43118 itgocn 43121 rgspnval 43125 elpglem2 48804 |
Copyright terms: Public domain | W3C validator |