| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| Ref | Expression |
|---|---|
| elpw2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elpw2g 5273 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4551 |
| This theorem is referenced by: elpwi2 5275 axpweq 5291 knatar 7297 dffi3 9321 marypha1lem 9323 r1pwss 9683 rankr1bg 9702 pwwf 9706 unwf 9709 rankval2 9717 uniwf 9718 rankpwi 9722 dfac2a 10027 dfac12lem2 10042 axdc4lem 10352 axdclem 10416 incexclem 15749 rpnnen2lem1 16129 rpnnen2lem2 16130 sadfval 16369 smufval 16394 smupf 16395 vdwapf 16890 prdshom 17377 mreacs 17570 acsfn 17571 lubeldm 18263 lubval 18266 glbeldm 18276 glbval 18279 clatlem 18414 clatlubcl2 18416 clatglbcl2 18418 issubmgm 18616 issubm 18717 issubg 19045 cntzval 19239 sylow1lem2 19517 lsmvalx 19557 pj1fval 19612 issubrng 20468 issubrg 20492 rgspnval 20533 islss 20873 lspval 20914 lspcl 20915 islbs 21016 lbsextlem1 21101 lbsextlem3 21103 lbsextlem4 21104 sraval 21115 ocvval 21610 isobs 21663 islinds 21752 aspval 21816 uncmp 23324 cmpfi 23329 cmpfii 23330 2ndc1stc 23372 1stcrest 23374 hausllycmp 23415 lly1stc 23417 1stckgenlem 23474 txlly 23557 txnlly 23558 tx1stc 23571 basqtop 23632 tgqtop 23633 alexsubALTlem3 23970 alexsubALTlem4 23971 alexsubALT 23972 cncfval 24814 cnllycmp 24888 ovolficcss 25403 ovolval 25407 ovolicc2 25456 ismbl 25460 mblsplit 25466 voliunlem3 25486 vitalilem4 25545 vitalilem5 25546 dvfval 25831 dvnfval 25857 cpnfval 25867 plyval 26131 dmarea 26900 wilthlem2 27012 issh 31195 ocval 31267 spanval 31320 hsupval 31321 sshjval 31337 sshjval3 31341 zarcls 33894 zartopn 33895 sigagensiga 34161 dya2iocuni 34303 coinflippv 34504 ballotlemelo 34508 ballotth 34558 rankval2b 35117 r1ssel 35125 erdszelem1 35242 kur14lem9 35265 kur14 35267 cnllysconn 35296 elmpst 35587 mclsrcl 35612 mclsval 35614 icoreresf 37403 cntotbnd 37842 heibor1lem 37855 heibor 37867 isidl 38060 igenval 38107 paddval 39903 pclvalN 39995 polvalN 40010 docavalN 41228 djavalN 41240 dicval 41281 dochval 41456 djhval 41503 lpolconN 41592 elpwbi 42329 elmzpcl 42824 eldiophb 42855 rpnnen3 43130 islssfgi 43170 hbt 43228 elmnc 43234 itgoval 43259 itgocn 43262 elpglem2 49818 |
| Copyright terms: Public domain | W3C validator |