Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
Ref | Expression |
---|---|
elpw2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elpw2g 5268 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: elpwi2 5270 axpweq 5287 knatar 7228 dffi3 9190 marypha1lem 9192 r1pwss 9542 rankr1bg 9561 pwwf 9565 unwf 9568 rankval2 9576 uniwf 9577 rankpwi 9581 dfac2a 9885 dfac12lem2 9900 axdc4lem 10211 axdclem 10275 incexclem 15548 rpnnen2lem1 15923 rpnnen2lem2 15924 sadfval 16159 smufval 16184 smupf 16185 vdwapf 16673 prdshom 17178 mreacs 17367 acsfn 17368 lubeldm 18071 lubval 18074 glbeldm 18084 glbval 18087 clatlem 18220 clatlubcl2 18222 clatglbcl2 18224 issubm 18442 issubg 18755 cntzval 18927 sylow1lem2 19204 lsmvalx 19244 pj1fval 19300 issubrg 20024 islss 20196 lspval 20237 lspcl 20238 islbs 20338 lbsextlem1 20420 lbsextlem3 20422 lbsextlem4 20423 sraval 20438 ocvval 20872 isobs 20927 islinds 21016 aspval 21077 uncmp 22554 cmpfi 22559 cmpfii 22560 2ndc1stc 22602 1stcrest 22604 hausllycmp 22645 lly1stc 22647 1stckgenlem 22704 txlly 22787 txnlly 22788 tx1stc 22801 basqtop 22862 tgqtop 22863 alexsubALTlem3 23200 alexsubALTlem4 23201 alexsubALT 23202 cncfval 24051 cnllycmp 24119 ovolficcss 24633 ovolval 24637 ovolicc2 24686 ismbl 24690 mblsplit 24696 voliunlem3 24716 vitalilem4 24775 vitalilem5 24776 dvfval 25061 dvnfval 25086 cpnfval 25096 plyval 25354 dmarea 26107 wilthlem2 26218 issh 29570 ocval 29642 spanval 29695 hsupval 29696 sshjval 29712 sshjval3 29716 zarcls 31824 zartopn 31825 sigagensiga 32109 dya2iocuni 32250 coinflippv 32450 ballotlemelo 32454 ballotth 32504 erdszelem1 33153 kur14lem9 33176 kur14 33178 cnllysconn 33207 elmpst 33498 mclsrcl 33523 mclsval 33525 icoreresf 35523 cntotbnd 35954 heibor1lem 35967 heibor 35979 isidl 36172 igenval 36219 paddval 37812 pclvalN 37904 polvalN 37919 docavalN 39137 djavalN 39149 dicval 39190 dochval 39365 djhval 39412 lpolconN 39501 elpwbi 40205 elmzpcl 40548 eldiophb 40579 rpnnen3 40854 islssfgi 40897 hbt 40955 elmnc 40961 itgoval 40986 itgocn 40989 rgspnval 40993 issubmgm 45343 elpglem2 46417 |
Copyright terms: Public domain | W3C validator |