Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
Ref | Expression |
---|---|
elpw2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elpw2g 5263 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: elpwi2 5265 axpweq 5282 knatar 7208 dffi3 9120 marypha1lem 9122 r1pwss 9473 rankr1bg 9492 pwwf 9496 unwf 9499 rankval2 9507 uniwf 9508 rankpwi 9512 dfac2a 9816 dfac12lem2 9831 axdc4lem 10142 axdclem 10206 incexclem 15476 rpnnen2lem1 15851 rpnnen2lem2 15852 sadfval 16087 smufval 16112 smupf 16113 vdwapf 16601 prdshom 17095 mreacs 17284 acsfn 17285 lubeldm 17986 lubval 17989 glbeldm 17999 glbval 18002 clatlem 18135 clatlubcl2 18137 clatglbcl2 18139 issubm 18357 issubg 18670 cntzval 18842 sylow1lem2 19119 lsmvalx 19159 pj1fval 19215 issubrg 19939 islss 20111 lspval 20152 lspcl 20153 islbs 20253 lbsextlem1 20335 lbsextlem3 20337 lbsextlem4 20338 sraval 20353 ocvval 20784 isobs 20837 islinds 20926 aspval 20987 uncmp 22462 cmpfi 22467 cmpfii 22468 2ndc1stc 22510 1stcrest 22512 hausllycmp 22553 lly1stc 22555 1stckgenlem 22612 txlly 22695 txnlly 22696 tx1stc 22709 basqtop 22770 tgqtop 22771 alexsubALTlem3 23108 alexsubALTlem4 23109 alexsubALT 23110 cncfval 23957 cnllycmp 24025 ovolficcss 24538 ovolval 24542 ovolicc2 24591 ismbl 24595 mblsplit 24601 voliunlem3 24621 vitalilem4 24680 vitalilem5 24681 dvfval 24966 dvnfval 24991 cpnfval 25001 plyval 25259 dmarea 26012 wilthlem2 26123 issh 29471 ocval 29543 spanval 29596 hsupval 29597 sshjval 29613 sshjval3 29617 zarcls 31726 zartopn 31727 sigagensiga 32009 dya2iocuni 32150 coinflippv 32350 ballotlemelo 32354 ballotth 32404 erdszelem1 33053 kur14lem9 33076 kur14 33078 cnllysconn 33107 elmpst 33398 mclsrcl 33423 mclsval 33425 icoreresf 35450 cntotbnd 35881 heibor1lem 35894 heibor 35906 isidl 36099 igenval 36146 paddval 37739 pclvalN 37831 polvalN 37846 docavalN 39064 djavalN 39076 dicval 39117 dochval 39292 djhval 39339 lpolconN 39428 elpwbi 40131 elmzpcl 40464 eldiophb 40495 rpnnen3 40770 islssfgi 40813 hbt 40871 elmnc 40877 itgoval 40902 itgocn 40905 rgspnval 40909 issubmgm 45231 elpglem2 46303 |
Copyright terms: Public domain | W3C validator |