![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
Ref | Expression |
---|---|
elpw2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elpw2g 5338 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 𝒫 cpw 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 df-ss 3979 df-pw 4606 |
This theorem is referenced by: elpwi2 5340 axpweq 5356 knatar 7376 dffi3 9468 marypha1lem 9470 r1pwss 9821 rankr1bg 9840 pwwf 9844 unwf 9847 rankval2 9855 uniwf 9856 rankpwi 9860 dfac2a 10167 dfac12lem2 10182 axdc4lem 10492 axdclem 10556 incexclem 15868 rpnnen2lem1 16246 rpnnen2lem2 16247 sadfval 16485 smufval 16510 smupf 16511 vdwapf 17005 prdshom 17513 mreacs 17702 acsfn 17703 lubeldm 18410 lubval 18413 glbeldm 18423 glbval 18426 clatlem 18559 clatlubcl2 18561 clatglbcl2 18563 issubmgm 18727 issubm 18828 issubg 19156 cntzval 19351 sylow1lem2 19631 lsmvalx 19671 pj1fval 19726 issubrng 20563 issubrg 20587 rgspnval 20628 islss 20949 lspval 20990 lspcl 20991 islbs 21092 lbsextlem1 21177 lbsextlem3 21179 lbsextlem4 21180 sraval 21191 ocvval 21702 isobs 21757 islinds 21846 aspval 21910 uncmp 23426 cmpfi 23431 cmpfii 23432 2ndc1stc 23474 1stcrest 23476 hausllycmp 23517 lly1stc 23519 1stckgenlem 23576 txlly 23659 txnlly 23660 tx1stc 23673 basqtop 23734 tgqtop 23735 alexsubALTlem3 24072 alexsubALTlem4 24073 alexsubALT 24074 cncfval 24927 cnllycmp 25001 ovolficcss 25517 ovolval 25521 ovolicc2 25570 ismbl 25574 mblsplit 25580 voliunlem3 25600 vitalilem4 25659 vitalilem5 25660 dvfval 25946 dvnfval 25972 cpnfval 25982 plyval 26246 dmarea 27014 wilthlem2 27126 issh 31236 ocval 31308 spanval 31361 hsupval 31362 sshjval 31378 sshjval3 31382 zarcls 33834 zartopn 33835 sigagensiga 34121 dya2iocuni 34264 coinflippv 34464 ballotlemelo 34468 ballotth 34518 erdszelem1 35175 kur14lem9 35198 kur14 35200 cnllysconn 35229 elmpst 35520 mclsrcl 35545 mclsval 35547 icoreresf 37334 cntotbnd 37782 heibor1lem 37795 heibor 37807 isidl 38000 igenval 38047 paddval 39780 pclvalN 39872 polvalN 39887 docavalN 41105 djavalN 41117 dicval 41158 dochval 41333 djhval 41380 lpolconN 41469 elpwbi 42247 elmzpcl 42713 eldiophb 42744 rpnnen3 43020 islssfgi 43060 hbt 43118 elmnc 43124 itgoval 43149 itgocn 43152 elpglem2 48942 |
Copyright terms: Public domain | W3C validator |