| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| Ref | Expression |
|---|---|
| elpw2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elpw2g 5303 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: elpwi2 5305 axpweq 5321 knatar 7350 dffi3 9443 marypha1lem 9445 r1pwss 9798 rankr1bg 9817 pwwf 9821 unwf 9824 rankval2 9832 uniwf 9833 rankpwi 9837 dfac2a 10144 dfac12lem2 10159 axdc4lem 10469 axdclem 10533 incexclem 15852 rpnnen2lem1 16232 rpnnen2lem2 16233 sadfval 16471 smufval 16496 smupf 16497 vdwapf 16992 prdshom 17481 mreacs 17670 acsfn 17671 lubeldm 18363 lubval 18366 glbeldm 18376 glbval 18379 clatlem 18512 clatlubcl2 18514 clatglbcl2 18516 issubmgm 18680 issubm 18781 issubg 19109 cntzval 19304 sylow1lem2 19580 lsmvalx 19620 pj1fval 19675 issubrng 20507 issubrg 20531 rgspnval 20572 islss 20891 lspval 20932 lspcl 20933 islbs 21034 lbsextlem1 21119 lbsextlem3 21121 lbsextlem4 21122 sraval 21133 ocvval 21627 isobs 21680 islinds 21769 aspval 21833 uncmp 23341 cmpfi 23346 cmpfii 23347 2ndc1stc 23389 1stcrest 23391 hausllycmp 23432 lly1stc 23434 1stckgenlem 23491 txlly 23574 txnlly 23575 tx1stc 23588 basqtop 23649 tgqtop 23650 alexsubALTlem3 23987 alexsubALTlem4 23988 alexsubALT 23989 cncfval 24832 cnllycmp 24906 ovolficcss 25422 ovolval 25426 ovolicc2 25475 ismbl 25479 mblsplit 25485 voliunlem3 25505 vitalilem4 25564 vitalilem5 25565 dvfval 25850 dvnfval 25876 cpnfval 25886 plyval 26150 dmarea 26919 wilthlem2 27031 issh 31189 ocval 31261 spanval 31314 hsupval 31315 sshjval 31331 sshjval3 31335 zarcls 33905 zartopn 33906 sigagensiga 34172 dya2iocuni 34315 coinflippv 34516 ballotlemelo 34520 ballotth 34570 erdszelem1 35213 kur14lem9 35236 kur14 35238 cnllysconn 35267 elmpst 35558 mclsrcl 35583 mclsval 35585 icoreresf 37370 cntotbnd 37820 heibor1lem 37833 heibor 37845 isidl 38038 igenval 38085 paddval 39817 pclvalN 39909 polvalN 39924 docavalN 41142 djavalN 41154 dicval 41195 dochval 41370 djhval 41417 lpolconN 41506 elpwbi 42281 elmzpcl 42749 eldiophb 42780 rpnnen3 43056 islssfgi 43096 hbt 43154 elmnc 43160 itgoval 43185 itgocn 43188 elpglem2 49576 |
| Copyright terms: Public domain | W3C validator |