| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| Ref | Expression |
|---|---|
| elpw2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elpw2g 5275 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-in 3912 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: elpwi2 5277 axpweq 5293 knatar 7298 dffi3 9340 marypha1lem 9342 r1pwss 9699 rankr1bg 9718 pwwf 9722 unwf 9725 rankval2 9733 uniwf 9734 rankpwi 9738 dfac2a 10043 dfac12lem2 10058 axdc4lem 10368 axdclem 10432 incexclem 15761 rpnnen2lem1 16141 rpnnen2lem2 16142 sadfval 16381 smufval 16406 smupf 16407 vdwapf 16902 prdshom 17389 mreacs 17582 acsfn 17583 lubeldm 18275 lubval 18278 glbeldm 18288 glbval 18291 clatlem 18426 clatlubcl2 18428 clatglbcl2 18430 issubmgm 18594 issubm 18695 issubg 19023 cntzval 19218 sylow1lem2 19496 lsmvalx 19536 pj1fval 19591 issubrng 20450 issubrg 20474 rgspnval 20515 islss 20855 lspval 20896 lspcl 20897 islbs 20998 lbsextlem1 21083 lbsextlem3 21085 lbsextlem4 21086 sraval 21097 ocvval 21592 isobs 21645 islinds 21734 aspval 21798 uncmp 23306 cmpfi 23311 cmpfii 23312 2ndc1stc 23354 1stcrest 23356 hausllycmp 23397 lly1stc 23399 1stckgenlem 23456 txlly 23539 txnlly 23540 tx1stc 23553 basqtop 23614 tgqtop 23615 alexsubALTlem3 23952 alexsubALTlem4 23953 alexsubALT 23954 cncfval 24797 cnllycmp 24871 ovolficcss 25386 ovolval 25390 ovolicc2 25439 ismbl 25443 mblsplit 25449 voliunlem3 25469 vitalilem4 25528 vitalilem5 25529 dvfval 25814 dvnfval 25840 cpnfval 25850 plyval 26114 dmarea 26883 wilthlem2 26995 issh 31170 ocval 31242 spanval 31295 hsupval 31296 sshjval 31312 sshjval3 31316 zarcls 33840 zartopn 33841 sigagensiga 34107 dya2iocuni 34250 coinflippv 34451 ballotlemelo 34455 ballotth 34505 erdszelem1 35163 kur14lem9 35186 kur14 35188 cnllysconn 35217 elmpst 35508 mclsrcl 35533 mclsval 35535 icoreresf 37325 cntotbnd 37775 heibor1lem 37788 heibor 37800 isidl 37993 igenval 38040 paddval 39777 pclvalN 39869 polvalN 39884 docavalN 41102 djavalN 41114 dicval 41155 dochval 41330 djhval 41377 lpolconN 41466 elpwbi 42203 elmzpcl 42699 eldiophb 42730 rpnnen3 43005 islssfgi 43045 hbt 43103 elmnc 43109 itgoval 43134 itgocn 43137 elpglem2 49685 |
| Copyright terms: Public domain | W3C validator |