| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| Ref | Expression |
|---|---|
| elpw2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elpw2g 5300 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 Vcvv 3457 ⊆ wss 3924 𝒫 cpw 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-in 3931 df-ss 3941 df-pw 4575 |
| This theorem is referenced by: elpwi2 5302 axpweq 5318 knatar 7345 dffi3 9437 marypha1lem 9439 r1pwss 9790 rankr1bg 9809 pwwf 9813 unwf 9816 rankval2 9824 uniwf 9825 rankpwi 9829 dfac2a 10136 dfac12lem2 10151 axdc4lem 10461 axdclem 10525 incexclem 15839 rpnnen2lem1 16217 rpnnen2lem2 16218 sadfval 16456 smufval 16481 smupf 16482 vdwapf 16977 prdshom 17466 mreacs 17655 acsfn 17656 lubeldm 18348 lubval 18351 glbeldm 18361 glbval 18364 clatlem 18497 clatlubcl2 18499 clatglbcl2 18501 issubmgm 18665 issubm 18766 issubg 19094 cntzval 19289 sylow1lem2 19565 lsmvalx 19605 pj1fval 19660 issubrng 20492 issubrg 20516 rgspnval 20557 islss 20876 lspval 20917 lspcl 20918 islbs 21019 lbsextlem1 21104 lbsextlem3 21106 lbsextlem4 21107 sraval 21118 ocvval 21612 isobs 21665 islinds 21754 aspval 21818 uncmp 23326 cmpfi 23331 cmpfii 23332 2ndc1stc 23374 1stcrest 23376 hausllycmp 23417 lly1stc 23419 1stckgenlem 23476 txlly 23559 txnlly 23560 tx1stc 23573 basqtop 23634 tgqtop 23635 alexsubALTlem3 23972 alexsubALTlem4 23973 alexsubALT 23974 cncfval 24817 cnllycmp 24891 ovolficcss 25407 ovolval 25411 ovolicc2 25460 ismbl 25464 mblsplit 25470 voliunlem3 25490 vitalilem4 25549 vitalilem5 25550 dvfval 25835 dvnfval 25861 cpnfval 25871 plyval 26135 dmarea 26903 wilthlem2 27015 issh 31121 ocval 31193 spanval 31246 hsupval 31247 sshjval 31263 sshjval3 31267 zarcls 33813 zartopn 33814 sigagensiga 34080 dya2iocuni 34223 coinflippv 34424 ballotlemelo 34428 ballotth 34478 erdszelem1 35134 kur14lem9 35157 kur14 35159 cnllysconn 35188 elmpst 35479 mclsrcl 35504 mclsval 35506 icoreresf 37291 cntotbnd 37741 heibor1lem 37754 heibor 37766 isidl 37959 igenval 38006 paddval 39738 pclvalN 39830 polvalN 39845 docavalN 41063 djavalN 41075 dicval 41116 dochval 41291 djhval 41338 lpolconN 41427 elpwbi 42203 elmzpcl 42674 eldiophb 42705 rpnnen3 42981 islssfgi 43021 hbt 43079 elmnc 43085 itgoval 43110 itgocn 43113 elpglem2 49296 |
| Copyright terms: Public domain | W3C validator |