Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaopab Structured version   Visualization version   GIF version

Theorem imaopab 42349
Description: The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023.)
Assertion
Ref Expression
imaopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem imaopab
StepHypRef Expression
1 df-ima 5632 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = ran ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴)
2 resopab 5987 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
32rneqi 5881 . 2 ran ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
4 rnopab 5898 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)}
5 df-rex 3058 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
65abbii 2800 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)}
74, 6eqtr4i 2759 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
81, 3, 73eqtri 2760 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wrex 3057  {copab 5155  ran crn 5620  cres 5621  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  prjspeclsp  42730
  Copyright terms: Public domain W3C validator