Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaopab Structured version   Visualization version   GIF version

Theorem imaopab 42263
Description: The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023.)
Assertion
Ref Expression
imaopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem imaopab
StepHypRef Expression
1 df-ima 5629 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = ran ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴)
2 resopab 5983 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
32rneqi 5877 . 2 ran ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
4 rnopab 5894 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)}
5 df-rex 3057 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
65abbii 2798 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)}
74, 6eqtr4i 2757 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
81, 3, 73eqtri 2758 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wrex 3056  {copab 5153  ran crn 5617  cres 5618  cima 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629
This theorem is referenced by:  prjspeclsp  42644
  Copyright terms: Public domain W3C validator