![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaopab | Structured version Visualization version GIF version |
Description: The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023.) |
Ref | Expression |
---|---|
imaopab | ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5688 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = ran ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) | |
2 | resopab 6033 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | rneqi 5935 | . 2 ⊢ ran ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
4 | rnopab 5952 | . . 3 ⊢ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 5 | abbii 2800 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)} |
7 | 4, 6 | eqtr4i 2761 | . 2 ⊢ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
8 | 1, 3, 7 | 3eqtri 2762 | 1 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2707 ∃wrex 3068 {copab 5209 ran crn 5676 ↾ cres 5677 “ cima 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: prjspeclsp 41656 |
Copyright terms: Public domain | W3C validator |