| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaopab | Structured version Visualization version GIF version | ||
| Description: The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| Ref | Expression |
|---|---|
| imaopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = ran ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) | |
| 2 | resopab 6005 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | rneqi 5901 | . 2 ⊢ ran ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 4 | rnopab 5918 | . . 3 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 5 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | abbii 2796 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 7 | 4, 6 | eqtr4i 2755 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| 8 | 1, 3, 7 | 3eqtri 2756 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {copab 5169 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: prjspeclsp 42600 |
| Copyright terms: Public domain | W3C validator |