| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaopab | Structured version Visualization version GIF version | ||
| Description: The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| Ref | Expression |
|---|---|
| imaopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5632 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = ran ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) | |
| 2 | resopab 5987 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | rneqi 5881 | . 2 ⊢ ran ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 4 | rnopab 5898 | . . 3 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 5 | df-rex 3058 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | abbii 2800 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 7 | 4, 6 | eqtr4i 2759 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| 8 | 1, 3, 7 | 3eqtri 2760 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 ∃wrex 3057 {copab 5155 ran crn 5620 ↾ cres 5621 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: prjspeclsp 42730 |
| Copyright terms: Public domain | W3C validator |