MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coexd Structured version   Visualization version   GIF version

Theorem coexd 7910
Description: The composition of two sets is a set. (Contributed by SN, 7-Feb-2025.)
Hypotheses
Ref Expression
coexd.1 (𝜑𝐴𝑉)
coexd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
coexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem coexd
StepHypRef Expression
1 coexd.1 . 2 (𝜑𝐴𝑉)
2 coexd.2 . 2 (𝜑𝐵𝑊)
3 coexg 7908 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450  ccom 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652
This theorem is referenced by:  rhmmpl  22277  rhmply1vr1  22281  rhmply1vsca  22282  1arithidom  33515  aks5lem2  42182  rhmpsr  42547  fuco112  49322  fuco111  49323  fuco112x  49325  prcof21a  49384
  Copyright terms: Public domain W3C validator