MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coexd Structured version   Visualization version   GIF version

Theorem coexd 7870
Description: The composition of two sets is a set. (Contributed by SN, 7-Feb-2025.)
Hypotheses
Ref Expression
coexd.1 (𝜑𝐴𝑉)
coexd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
coexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem coexd
StepHypRef Expression
1 coexd.1 . 2 (𝜑𝐴𝑉)
2 coexd.2 . 2 (𝜑𝐵𝑊)
3 coexg 7868 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Vcvv 3437  ccom 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632
This theorem is referenced by:  rhmmpl  22318  rhmply1vr1  22322  rhmply1vsca  22323  1arithidom  33546  esplyfval  33649  aks5lem2  42353  rhmpsr  42720  fuco112  49490  fuco111  49491  fuco112x  49493  prcof21a  49552
  Copyright terms: Public domain W3C validator