MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coexd Structured version   Visualization version   GIF version

Theorem coexd 7856
Description: The composition of two sets is a set. (Contributed by SN, 7-Feb-2025.)
Hypotheses
Ref Expression
coexd.1 (𝜑𝐴𝑉)
coexd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
coexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem coexd
StepHypRef Expression
1 coexd.1 . 2 (𝜑𝐴𝑉)
2 coexd.2 . 2 (𝜑𝐵𝑊)
3 coexg 7854 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  ccom 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622
This theorem is referenced by:  rhmmpl  22293  rhmply1vr1  22297  rhmply1vsca  22298  1arithidom  33494  esplyfval  33578  aks5lem2  42220  rhmpsr  42585  fuco112  49361  fuco111  49362  fuco112x  49364  prcof21a  49423
  Copyright terms: Public domain W3C validator