MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coexd Structured version   Visualization version   GIF version

Theorem coexd 7927
Description: The composition of two sets is a set. (Contributed by SN, 7-Feb-2025.)
Hypotheses
Ref Expression
coexd.1 (𝜑𝐴𝑉)
coexd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
coexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem coexd
StepHypRef Expression
1 coexd.1 . 2 (𝜑𝐴𝑉)
2 coexd.2 . 2 (𝜑𝐵𝑊)
3 coexg 7925 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459  ccom 5658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665
This theorem is referenced by:  rhmmpl  22321  rhmply1vr1  22325  rhmply1vsca  22326  1arithidom  33552  aks5lem2  42200  rhmpsr  42575  fuco112  49240  fuco111  49241  fuco112x  49243  prcof21a  49301
  Copyright terms: Public domain W3C validator