![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwi2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of elpwi2 5336 as of 26-May-2024. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2OLD | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . 3 ⊢ 𝐵 ∈ 𝑉 | |
3 | elpw2g 5334 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ⊆ wss 3940 𝒫 cpw 4594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-in 3947 df-ss 3957 df-pw 4596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |