MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwi2OLD Structured version   Visualization version   GIF version

Theorem elpwi2OLD 5266
Description: Obsolete version of elpwi2 5265 as of 26-May-2024. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion
Ref Expression
elpwi2OLD 𝐴 ∈ 𝒫 𝐵

Proof of Theorem elpwi2OLD
StepHypRef Expression
1 elpwi2.2 . 2 𝐴𝐵
2 elpwi2.1 . . 3 𝐵𝑉
3 elpw2g 5263 . . 3 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
42, 3ax-mp 5 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
51, 4mpbir 230 1 𝐴 ∈ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator