![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
3 | 2 | elexi 3493 | . . 3 ⊢ 𝐵 ∈ V |
4 | 3 | elpw2 5345 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3948 𝒫 cpw 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 df-pw 4604 |
This theorem is referenced by: canth 7364 aceq3lem 10117 axdc3lem4 10450 uzf 12829 ixxf 13338 fzf 13492 bitsf 16372 prdsvallem 17404 prdsds 17414 wunnat 17911 wunnatOLD 17912 ocvfval 21438 leordtval2 22936 cnpfval 22958 iscnp2 22963 islly2 23208 xkotf 23309 alexsubALTlem4 23774 sszcld 24553 bndth 24698 ishtpy 24712 fpwrelmap 32213 ballotlem2 33773 satfrnmapom 34647 cover2 36886 clsk1indlem1 43098 sprsymrelfolem1 46459 |
Copyright terms: Public domain | W3C validator |