| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
| Ref | Expression |
|---|---|
| elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
| elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
| 3 | 2 | elexi 3459 | . . 3 ⊢ 𝐵 ∈ V |
| 4 | 3 | elpw2 5273 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: canth 7303 mptmpoopabbrd 8015 aceq3lem 10014 axdc3lem4 10347 uzf 12738 ixxf 13258 fzf 13414 bitsf 16338 prdsvallem 17358 prdsds 17368 wunnat 17866 ocvfval 21573 leordtval2 23097 cnpfval 23119 iscnp2 23124 islly2 23369 xkotf 23470 alexsubALTlem4 23935 sszcld 24704 bndth 24855 ishtpy 24869 fpwrelmap 32677 ballotlem2 34463 satfrnmapom 35353 cover2 37705 clsk1indlem1 44028 sprsymrelfolem1 47486 |
| Copyright terms: Public domain | W3C validator |