| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
| Ref | Expression |
|---|---|
| elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
| elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
| 3 | 2 | elexi 3482 | . . 3 ⊢ 𝐵 ∈ V |
| 4 | 3 | elpw2 5304 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: canth 7359 mptmpoopabbrd 8079 aceq3lem 10134 axdc3lem4 10467 uzf 12855 ixxf 13372 fzf 13528 bitsf 16446 prdsvallem 17468 prdsds 17478 wunnat 17972 ocvfval 21626 leordtval2 23150 cnpfval 23172 iscnp2 23177 islly2 23422 xkotf 23523 alexsubALTlem4 23988 sszcld 24757 bndth 24908 ishtpy 24922 fpwrelmap 32710 ballotlem2 34521 satfrnmapom 35392 cover2 37739 clsk1indlem1 44069 sprsymrelfolem1 47506 |
| Copyright terms: Public domain | W3C validator |