| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
| Ref | Expression |
|---|---|
| elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
| elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
| 3 | 2 | elexi 3473 | . . 3 ⊢ 𝐵 ∈ V |
| 4 | 3 | elpw2 5292 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: canth 7344 mptmpoopabbrd 8062 aceq3lem 10080 axdc3lem4 10413 uzf 12803 ixxf 13323 fzf 13479 bitsf 16404 prdsvallem 17424 prdsds 17434 wunnat 17928 ocvfval 21582 leordtval2 23106 cnpfval 23128 iscnp2 23133 islly2 23378 xkotf 23479 alexsubALTlem4 23944 sszcld 24713 bndth 24864 ishtpy 24878 fpwrelmap 32663 ballotlem2 34487 satfrnmapom 35364 cover2 37716 clsk1indlem1 44041 sprsymrelfolem1 47497 |
| Copyright terms: Public domain | W3C validator |