MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwi2 Structured version   Visualization version   GIF version

Theorem elpwi2 5293
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion
Ref Expression
elpwi2 𝐴 ∈ 𝒫 𝐵

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2 𝐴𝐵
2 elpwi2.1 . . . 4 𝐵𝑉
32elexi 3473 . . 3 𝐵 ∈ V
43elpw2 5292 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
51, 4mpbir 231 1 𝐴 ∈ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3917  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568
This theorem is referenced by:  canth  7344  mptmpoopabbrd  8062  aceq3lem  10080  axdc3lem4  10413  uzf  12803  ixxf  13323  fzf  13479  bitsf  16404  prdsvallem  17424  prdsds  17434  wunnat  17928  ocvfval  21582  leordtval2  23106  cnpfval  23128  iscnp2  23133  islly2  23378  xkotf  23479  alexsubALTlem4  23944  sszcld  24713  bndth  24864  ishtpy  24878  fpwrelmap  32663  ballotlem2  34487  satfrnmapom  35364  cover2  37716  clsk1indlem1  44041  sprsymrelfolem1  47497
  Copyright terms: Public domain W3C validator