MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwi2 Structured version   Visualization version   GIF version

Theorem elpwi2 5305
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion
Ref Expression
elpwi2 𝐴 ∈ 𝒫 𝐵

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2 𝐴𝐵
2 elpwi2.1 . . . 4 𝐵𝑉
32elexi 3482 . . 3 𝐵 ∈ V
43elpw2 5304 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
51, 4mpbir 231 1 𝐴 ∈ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wss 3926  𝒫 cpw 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-pw 4577
This theorem is referenced by:  canth  7359  mptmpoopabbrd  8079  aceq3lem  10134  axdc3lem4  10467  uzf  12855  ixxf  13372  fzf  13528  bitsf  16446  prdsvallem  17468  prdsds  17478  wunnat  17972  ocvfval  21626  leordtval2  23150  cnpfval  23172  iscnp2  23177  islly2  23422  xkotf  23523  alexsubALTlem4  23988  sszcld  24757  bndth  24908  ishtpy  24922  fpwrelmap  32710  ballotlem2  34521  satfrnmapom  35392  cover2  37739  clsk1indlem1  44069  sprsymrelfolem1  47506
  Copyright terms: Public domain W3C validator