Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
3 | 2 | elexi 3451 | . . 3 ⊢ 𝐵 ∈ V |
4 | 3 | elpw2 5269 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: canth 7229 aceq3lem 9876 axdc3lem4 10209 uzf 12585 ixxf 13089 fzf 13243 bitsf 16134 prdsvallem 17165 prdsds 17175 wunnat 17672 wunnatOLD 17673 ocvfval 20871 leordtval2 22363 cnpfval 22385 iscnp2 22390 islly2 22635 xkotf 22736 alexsubALTlem4 23201 sszcld 23980 bndth 24121 ishtpy 24135 fpwrelmap 31068 ballotlem2 32455 satfrnmapom 33332 cover2 35872 clsk1indlem1 41655 sprsymrelfolem1 44944 |
Copyright terms: Public domain | W3C validator |