Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
3 | 2 | elexi 3441 | . . 3 ⊢ 𝐵 ∈ V |
4 | 3 | elpw2 5264 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: canth 7209 aceq3lem 9807 axdc3lem4 10140 uzf 12514 ixxf 13018 fzf 13172 bitsf 16062 prdsvallem 17082 prdsds 17092 wunnat 17588 wunnatOLD 17589 ocvfval 20783 leordtval2 22271 cnpfval 22293 iscnp2 22298 islly2 22543 xkotf 22644 alexsubALTlem4 23109 sszcld 23886 bndth 24027 ishtpy 24041 fpwrelmap 30970 ballotlem2 32355 satfrnmapom 33232 cover2 35799 clsk1indlem1 41544 sprsymrelfolem1 44832 |
Copyright terms: Public domain | W3C validator |