MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwi2 Structured version   Visualization version   GIF version

Theorem elpwi2 5290
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion
Ref Expression
elpwi2 𝐴 ∈ 𝒫 𝐵

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2 𝐴𝐵
2 elpwi2.1 . . . 4 𝐵𝑉
32elexi 3470 . . 3 𝐵 ∈ V
43elpw2 5289 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
51, 4mpbir 231 1 𝐴 ∈ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3914  𝒫 cpw 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931  df-pw 4565
This theorem is referenced by:  canth  7341  mptmpoopabbrd  8059  aceq3lem  10073  axdc3lem4  10406  uzf  12796  ixxf  13316  fzf  13472  bitsf  16397  prdsvallem  17417  prdsds  17427  wunnat  17921  ocvfval  21575  leordtval2  23099  cnpfval  23121  iscnp2  23126  islly2  23371  xkotf  23472  alexsubALTlem4  23937  sszcld  24706  bndth  24857  ishtpy  24871  fpwrelmap  32656  ballotlem2  34480  satfrnmapom  35357  cover2  37709  clsk1indlem1  44034  sprsymrelfolem1  47493
  Copyright terms: Public domain W3C validator