![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . 3 ⊢ 𝐵 ∈ 𝑉 | |
3 | elpw2g 5099 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 223 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2051 ⊆ wss 3822 𝒫 cpw 4416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-sep 5056 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-v 3410 df-in 3829 df-ss 3836 df-pw 4418 |
This theorem is referenced by: canth 6932 aceq3lem 9338 axdc3lem4 9671 uzf 12059 ixxf 12562 fzf 12710 bitsf 15634 prdsval 16582 prdsds 16591 wunnat 17096 ocvfval 20527 leordtval2 21539 cnpfval 21561 iscnp2 21566 islly2 21811 xkotf 21912 alexsubALTlem4 22377 sszcld 23143 bndth 23280 ishtpy 23294 ballotlem2 31424 cover2 34468 sprsymrelfolem1 43056 |
Copyright terms: Public domain | W3C validator |