MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwi2 Structured version   Visualization version   GIF version

Theorem elpwi2 5274
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion
Ref Expression
elpwi2 𝐴 ∈ 𝒫 𝐵

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2 𝐴𝐵
2 elpwi2.1 . . . 4 𝐵𝑉
32elexi 3459 . . 3 𝐵 ∈ V
43elpw2 5273 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
51, 4mpbir 231 1 𝐴 ∈ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3903  𝒫 cpw 4551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-in 3910  df-ss 3920  df-pw 4553
This theorem is referenced by:  canth  7303  mptmpoopabbrd  8015  aceq3lem  10014  axdc3lem4  10347  uzf  12738  ixxf  13258  fzf  13414  bitsf  16338  prdsvallem  17358  prdsds  17368  wunnat  17866  ocvfval  21573  leordtval2  23097  cnpfval  23119  iscnp2  23124  islly2  23369  xkotf  23470  alexsubALTlem4  23935  sszcld  24704  bndth  24855  ishtpy  24869  fpwrelmap  32677  ballotlem2  34463  satfrnmapom  35353  cover2  37705  clsk1indlem1  44028  sprsymrelfolem1  47486
  Copyright terms: Public domain W3C validator