| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
| Ref | Expression |
|---|---|
| elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
| elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
| 3 | 2 | elexi 3503 | . . 3 ⊢ 𝐵 ∈ V |
| 4 | 3 | elpw2 5334 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ⊆ wss 3951 𝒫 cpw 4600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 df-pw 4602 |
| This theorem is referenced by: canth 7385 mptmpoopabbrd 8105 aceq3lem 10160 axdc3lem4 10493 uzf 12881 ixxf 13397 fzf 13551 bitsf 16464 prdsvallem 17499 prdsds 17509 wunnat 18004 ocvfval 21684 leordtval2 23220 cnpfval 23242 iscnp2 23247 islly2 23492 xkotf 23593 alexsubALTlem4 24058 sszcld 24839 bndth 24990 ishtpy 25004 fpwrelmap 32744 ballotlem2 34491 satfrnmapom 35375 cover2 37722 clsk1indlem1 44058 sprsymrelfolem1 47479 |
| Copyright terms: Public domain | W3C validator |