Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
3 | 2 | elexi 3460 | . . 3 ⊢ 𝐵 ∈ V |
4 | 3 | elpw2 5282 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ⊆ wss 3896 𝒫 cpw 4543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5236 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-in 3903 df-ss 3913 df-pw 4545 |
This theorem is referenced by: canth 7267 aceq3lem 9946 axdc3lem4 10279 uzf 12655 ixxf 13159 fzf 13313 bitsf 16203 prdsvallem 17232 prdsds 17242 wunnat 17739 wunnatOLD 17740 ocvfval 20942 leordtval2 22434 cnpfval 22456 iscnp2 22461 islly2 22706 xkotf 22807 alexsubALTlem4 23272 sszcld 24051 bndth 24192 ishtpy 24206 fpwrelmap 31176 ballotlem2 32561 satfrnmapom 33438 cover2 35932 clsk1indlem1 41883 sprsymrelfolem1 45203 |
Copyright terms: Public domain | W3C validator |