MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwi2 Structured version   Visualization version   GIF version

Theorem elpwi2 5271
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion
Ref Expression
elpwi2 𝐴 ∈ 𝒫 𝐵

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2 𝐴𝐵
2 elpwi2.1 . . . 4 𝐵𝑉
32elexi 3459 . . 3 𝐵 ∈ V
43elpw2 5270 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
51, 4mpbir 231 1 𝐴 ∈ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wss 3897  𝒫 cpw 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-pw 4549
This theorem is referenced by:  canth  7300  mptmpoopabbrd  8012  aceq3lem  10011  axdc3lem4  10344  uzf  12735  ixxf  13255  fzf  13411  bitsf  16338  prdsvallem  17358  prdsds  17368  wunnat  17866  ocvfval  21603  leordtval2  23127  cnpfval  23149  iscnp2  23154  islly2  23399  xkotf  23500  alexsubALTlem4  23965  sszcld  24733  bndth  24884  ishtpy  24898  fpwrelmap  32716  ballotlem2  34502  satfrnmapom  35414  cover2  37765  clsk1indlem1  44148  sprsymrelfolem1  47602
  Copyright terms: Public domain W3C validator