![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
3 | 2 | elexi 3511 | . . 3 ⊢ 𝐵 ∈ V |
4 | 3 | elpw2 5352 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: canth 7401 mptmpoopabbrd 8121 aceq3lem 10189 axdc3lem4 10522 uzf 12906 ixxf 13417 fzf 13571 bitsf 16473 prdsvallem 17514 prdsds 17524 wunnat 18024 wunnatOLD 18025 ocvfval 21707 leordtval2 23241 cnpfval 23263 iscnp2 23268 islly2 23513 xkotf 23614 alexsubALTlem4 24079 sszcld 24858 bndth 25009 ishtpy 25023 fpwrelmap 32747 ballotlem2 34453 satfrnmapom 35338 cover2 37675 clsk1indlem1 44007 sprsymrelfolem1 47366 |
Copyright terms: Public domain | W3C validator |