![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4605 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssexg 5317 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
3 | elpwg 4601 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
5 | 2, 4 | syldan 590 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
7 | 1, 6 | impbid2 225 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 𝒫 cpw 4598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-in 3951 df-ss 3961 df-pw 4600 |
This theorem is referenced by: elpw2 5341 elpwi2OLD 5343 pwnss 5345 difelpw 5347 rabelpw 5348 pw2f1olem 9092 fineqvlem 9278 elfir 9430 r1sscl 9800 tskwe 9965 dfac8alem 10044 acni2 10061 fin1ai 10308 fin2i 10310 fin23lem7 10331 fin23lem11 10332 isfin2-2 10334 fin23lem39 10365 isf34lem1 10387 isf34lem2 10388 isf34lem4 10392 isf34lem5 10393 fin1a2lem12 10426 canthnumlem 10663 tsken 10769 tskss 10773 gruss 10811 ismre 17561 mreintcl 17566 mremre 17575 submre 17576 mrcval 17581 mrccl 17582 mrcun 17593 ismri 17602 acsfiel 17625 isacs1i 17628 catcoppccl 18097 catcoppcclOLD 18098 acsdrsel 18526 acsdrscl 18529 acsficl 18530 pmtrval 19397 pmtrrn 19403 istopg 22784 uniopn 22786 iscld 22918 ntrval 22927 clsval 22928 discld 22980 mretopd 22983 neival 22993 isnei 22994 lpval 23030 restdis 23069 ordtbaslem 23079 ordtuni 23081 cndis 23182 tgcmp 23292 hauscmplem 23297 comppfsc 23423 elkgen 23427 xkoopn 23480 elqtop 23588 kqffn 23616 isfbas 23720 filss 23744 snfbas 23757 elfg 23762 ufilss 23796 fixufil 23813 cfinufil 23819 ufinffr 23820 ufilen 23821 fin1aufil 23823 flimclslem 23875 hauspwpwf1 23878 supnfcls 23911 flimfnfcls 23919 ptcmplem1 23943 tsmsfbas 24019 blfvalps 24276 blfps 24299 blf 24300 bcthlem5 25243 minveclem3b 25343 sigaclcuni 33673 sigaclcu2 33675 pwsiga 33685 erdsze2lem2 34750 cvmsval 34812 cvmsss2 34820 neibastop2lem 35780 tailf 35795 pibt2 36832 fin2so 37015 sdclem1 37151 elrfirn 42037 elrfirn2 42038 istopclsd 42042 nacsfix 42054 dnnumch1 42390 inpw 47812 |
Copyright terms: Public domain | W3C validator |