| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4582 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexg 5293 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 3 | elpwg 4578 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
| 5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
| 6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: elpw2 5304 rabelpw 5306 difelpw 5324 pw2f1olem 9090 fineqvlem 9270 elfir 9427 r1sscl 9799 tskwe 9964 dfac8alem 10043 acni2 10060 fin1ai 10307 fin2i 10309 fin23lem7 10330 fin23lem11 10331 isfin2-2 10333 fin23lem39 10364 isf34lem1 10386 isf34lem2 10387 isf34lem4 10391 isf34lem5 10392 fin1a2lem12 10425 canthnumlem 10662 tsken 10768 tskss 10772 gruss 10810 ismre 17602 mreintcl 17607 mremre 17616 submre 17617 mrcval 17622 mrccl 17623 mrcun 17634 ismri 17643 acsfiel 17666 isacs1i 17669 catcoppccl 18130 acsdrsel 18553 acsdrscl 18556 acsficl 18557 pmtrval 19432 pmtrrn 19438 istopg 22833 uniopn 22835 iscld 22965 ntrval 22974 clsval 22975 discld 23027 mretopd 23030 neival 23040 isnei 23041 lpval 23077 restdis 23116 ordtbaslem 23126 ordtuni 23128 cndis 23229 tgcmp 23339 hauscmplem 23344 comppfsc 23470 elkgen 23474 xkoopn 23527 elqtop 23635 kqffn 23663 isfbas 23767 filss 23791 snfbas 23804 elfg 23809 ufilss 23843 fixufil 23860 cfinufil 23866 ufinffr 23867 ufilen 23868 fin1aufil 23870 flimclslem 23922 hauspwpwf1 23925 supnfcls 23958 flimfnfcls 23966 ptcmplem1 23990 tsmsfbas 24066 blfvalps 24322 blfps 24345 blf 24346 bcthlem5 25280 minveclem3b 25380 sigaclcuni 34149 sigaclcu2 34151 pwsiga 34161 erdsze2lem2 35226 cvmsval 35288 cvmsss2 35296 neibastop2lem 36378 tailf 36393 pibt2 37435 fin2so 37631 sdclem1 37767 elrfirn 42718 elrfirn2 42719 istopclsd 42723 nacsfix 42735 dnnumch1 43068 inpw 48803 |
| Copyright terms: Public domain | W3C validator |