| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4572 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexg 5280 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 3 | elpwg 4568 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
| 5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
| 6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 𝒫 cpw 4565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3923 df-ss 3933 df-pw 4567 |
| This theorem is referenced by: elpw2 5291 rabelpw 5293 difelpw 5311 pw2f1olem 9049 fineqvlem 9215 elfir 9372 r1sscl 9744 tskwe 9909 dfac8alem 9988 acni2 10005 fin1ai 10252 fin2i 10254 fin23lem7 10275 fin23lem11 10276 isfin2-2 10278 fin23lem39 10309 isf34lem1 10331 isf34lem2 10332 isf34lem4 10336 isf34lem5 10337 fin1a2lem12 10370 canthnumlem 10607 tsken 10713 tskss 10717 gruss 10755 ismre 17557 mreintcl 17562 mremre 17571 submre 17572 mrcval 17577 mrccl 17578 mrcun 17589 ismri 17598 acsfiel 17621 isacs1i 17624 catcoppccl 18085 acsdrsel 18508 acsdrscl 18511 acsficl 18512 pmtrval 19387 pmtrrn 19393 istopg 22788 uniopn 22790 iscld 22920 ntrval 22929 clsval 22930 discld 22982 mretopd 22985 neival 22995 isnei 22996 lpval 23032 restdis 23071 ordtbaslem 23081 ordtuni 23083 cndis 23184 tgcmp 23294 hauscmplem 23299 comppfsc 23425 elkgen 23429 xkoopn 23482 elqtop 23590 kqffn 23618 isfbas 23722 filss 23746 snfbas 23759 elfg 23764 ufilss 23798 fixufil 23815 cfinufil 23821 ufinffr 23822 ufilen 23823 fin1aufil 23825 flimclslem 23877 hauspwpwf1 23880 supnfcls 23913 flimfnfcls 23921 ptcmplem1 23945 tsmsfbas 24021 blfvalps 24277 blfps 24300 blf 24301 bcthlem5 25234 minveclem3b 25334 sigaclcuni 34114 sigaclcu2 34116 pwsiga 34126 erdsze2lem2 35191 cvmsval 35253 cvmsss2 35261 neibastop2lem 36343 tailf 36358 pibt2 37400 fin2so 37596 sdclem1 37732 elrfirn 42676 elrfirn2 42677 istopclsd 42681 nacsfix 42693 dnnumch1 43026 inpw 48803 |
| Copyright terms: Public domain | W3C validator |