| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4556 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexg 5263 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 3 | elpwg 4552 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
| 5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
| 6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4551 |
| This theorem is referenced by: elpw2 5274 rabelpw 5276 difelpw 5294 pw2f1olem 9000 fineqvlem 9156 elfir 9305 r1sscl 9684 tskwe 9849 dfac8alem 9926 acni2 9943 fin1ai 10190 fin2i 10192 fin23lem7 10213 fin23lem11 10214 isfin2-2 10216 fin23lem39 10247 isf34lem1 10269 isf34lem2 10270 isf34lem4 10274 isf34lem5 10275 fin1a2lem12 10308 canthnumlem 10545 tsken 10651 tskss 10655 gruss 10693 ismre 17498 mreintcl 17503 mremre 17512 submre 17513 mrcval 17522 mrccl 17523 mrcun 17534 ismri 17543 acsfiel 17566 isacs1i 17569 catcoppccl 18030 acsdrsel 18455 acsdrscl 18458 acsficl 18459 pmtrval 19369 pmtrrn 19375 istopg 22816 uniopn 22818 iscld 22948 ntrval 22957 clsval 22958 discld 23010 mretopd 23013 neival 23023 isnei 23024 lpval 23060 restdis 23099 ordtbaslem 23109 ordtuni 23111 cndis 23212 tgcmp 23322 hauscmplem 23327 comppfsc 23453 elkgen 23457 xkoopn 23510 elqtop 23618 kqffn 23646 isfbas 23750 filss 23774 snfbas 23787 elfg 23792 ufilss 23826 fixufil 23843 cfinufil 23849 ufinffr 23850 ufilen 23851 fin1aufil 23853 flimclslem 23905 hauspwpwf1 23908 supnfcls 23941 flimfnfcls 23949 ptcmplem1 23973 tsmsfbas 24049 blfvalps 24304 blfps 24327 blf 24328 bcthlem5 25261 minveclem3b 25361 sigaclcuni 34138 sigaclcu2 34140 pwsiga 34150 erdsze2lem2 35255 cvmsval 35317 cvmsss2 35325 neibastop2lem 36411 tailf 36426 pibt2 37468 fin2so 37653 sdclem1 37789 elrfirn 42793 elrfirn2 42794 istopclsd 42798 nacsfix 42810 dnnumch1 43142 inpw 48930 |
| Copyright terms: Public domain | W3C validator |