| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4570 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexg 5278 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 3 | elpwg 4566 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
| 5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
| 6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: elpw2 5289 rabelpw 5291 difelpw 5309 pw2f1olem 9045 fineqvlem 9209 elfir 9366 r1sscl 9738 tskwe 9903 dfac8alem 9982 acni2 9999 fin1ai 10246 fin2i 10248 fin23lem7 10269 fin23lem11 10270 isfin2-2 10272 fin23lem39 10303 isf34lem1 10325 isf34lem2 10326 isf34lem4 10330 isf34lem5 10331 fin1a2lem12 10364 canthnumlem 10601 tsken 10707 tskss 10711 gruss 10749 ismre 17551 mreintcl 17556 mremre 17565 submre 17566 mrcval 17571 mrccl 17572 mrcun 17583 ismri 17592 acsfiel 17615 isacs1i 17618 catcoppccl 18079 acsdrsel 18502 acsdrscl 18505 acsficl 18506 pmtrval 19381 pmtrrn 19387 istopg 22782 uniopn 22784 iscld 22914 ntrval 22923 clsval 22924 discld 22976 mretopd 22979 neival 22989 isnei 22990 lpval 23026 restdis 23065 ordtbaslem 23075 ordtuni 23077 cndis 23178 tgcmp 23288 hauscmplem 23293 comppfsc 23419 elkgen 23423 xkoopn 23476 elqtop 23584 kqffn 23612 isfbas 23716 filss 23740 snfbas 23753 elfg 23758 ufilss 23792 fixufil 23809 cfinufil 23815 ufinffr 23816 ufilen 23817 fin1aufil 23819 flimclslem 23871 hauspwpwf1 23874 supnfcls 23907 flimfnfcls 23915 ptcmplem1 23939 tsmsfbas 24015 blfvalps 24271 blfps 24294 blf 24295 bcthlem5 25228 minveclem3b 25328 sigaclcuni 34108 sigaclcu2 34110 pwsiga 34120 erdsze2lem2 35191 cvmsval 35253 cvmsss2 35261 neibastop2lem 36348 tailf 36363 pibt2 37405 fin2so 37601 sdclem1 37737 elrfirn 42683 elrfirn2 42684 istopclsd 42688 nacsfix 42700 dnnumch1 43033 inpw 48813 |
| Copyright terms: Public domain | W3C validator |