![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4610 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssexg 5323 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
3 | elpwg 4606 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimparc 478 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
5 | 2, 4 | syldan 589 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
6 | 5 | expcom 412 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
7 | 1, 6 | impbid2 225 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3945 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-in 3952 df-ss 3962 df-pw 4605 |
This theorem is referenced by: elpw2 5347 pwnss 5350 difelpw 5352 rabelpw 5353 pw2f1olem 9099 fineqvlem 9285 elfir 9438 r1sscl 9808 tskwe 9973 dfac8alem 10052 acni2 10069 fin1ai 10316 fin2i 10318 fin23lem7 10339 fin23lem11 10340 isfin2-2 10342 fin23lem39 10373 isf34lem1 10395 isf34lem2 10396 isf34lem4 10400 isf34lem5 10401 fin1a2lem12 10434 canthnumlem 10671 tsken 10777 tskss 10781 gruss 10819 ismre 17570 mreintcl 17575 mremre 17584 submre 17585 mrcval 17590 mrccl 17591 mrcun 17602 ismri 17611 acsfiel 17634 isacs1i 17637 catcoppccl 18106 catcoppcclOLD 18107 acsdrsel 18535 acsdrscl 18538 acsficl 18539 pmtrval 19411 pmtrrn 19417 istopg 22828 uniopn 22830 iscld 22962 ntrval 22971 clsval 22972 discld 23024 mretopd 23027 neival 23037 isnei 23038 lpval 23074 restdis 23113 ordtbaslem 23123 ordtuni 23125 cndis 23226 tgcmp 23336 hauscmplem 23341 comppfsc 23467 elkgen 23471 xkoopn 23524 elqtop 23632 kqffn 23660 isfbas 23764 filss 23788 snfbas 23801 elfg 23806 ufilss 23840 fixufil 23857 cfinufil 23863 ufinffr 23864 ufilen 23865 fin1aufil 23867 flimclslem 23919 hauspwpwf1 23922 supnfcls 23955 flimfnfcls 23963 ptcmplem1 23987 tsmsfbas 24063 blfvalps 24320 blfps 24343 blf 24344 bcthlem5 25287 minveclem3b 25387 sigaclcuni 33824 sigaclcu2 33826 pwsiga 33836 erdsze2lem2 34901 cvmsval 34963 cvmsss2 34971 neibastop2lem 35931 tailf 35946 pibt2 36983 fin2so 37167 sdclem1 37303 elrfirn 42197 elrfirn2 42198 istopclsd 42202 nacsfix 42214 dnnumch1 42550 inpw 48017 |
Copyright terms: Public domain | W3C validator |