![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4612 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssexg 5329 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
3 | elpwg 4608 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-pw 4607 |
This theorem is referenced by: elpw2 5340 rabelpw 5342 difelpw 5360 pw2f1olem 9115 fineqvlem 9296 elfir 9453 r1sscl 9823 tskwe 9988 dfac8alem 10067 acni2 10084 fin1ai 10331 fin2i 10333 fin23lem7 10354 fin23lem11 10355 isfin2-2 10357 fin23lem39 10388 isf34lem1 10410 isf34lem2 10411 isf34lem4 10415 isf34lem5 10416 fin1a2lem12 10449 canthnumlem 10686 tsken 10792 tskss 10796 gruss 10834 ismre 17635 mreintcl 17640 mremre 17649 submre 17650 mrcval 17655 mrccl 17656 mrcun 17667 ismri 17676 acsfiel 17699 isacs1i 17702 catcoppccl 18171 catcoppcclOLD 18172 acsdrsel 18601 acsdrscl 18604 acsficl 18605 pmtrval 19484 pmtrrn 19490 istopg 22917 uniopn 22919 iscld 23051 ntrval 23060 clsval 23061 discld 23113 mretopd 23116 neival 23126 isnei 23127 lpval 23163 restdis 23202 ordtbaslem 23212 ordtuni 23214 cndis 23315 tgcmp 23425 hauscmplem 23430 comppfsc 23556 elkgen 23560 xkoopn 23613 elqtop 23721 kqffn 23749 isfbas 23853 filss 23877 snfbas 23890 elfg 23895 ufilss 23929 fixufil 23946 cfinufil 23952 ufinffr 23953 ufilen 23954 fin1aufil 23956 flimclslem 24008 hauspwpwf1 24011 supnfcls 24044 flimfnfcls 24052 ptcmplem1 24076 tsmsfbas 24152 blfvalps 24409 blfps 24432 blf 24433 bcthlem5 25376 minveclem3b 25476 sigaclcuni 34099 sigaclcu2 34101 pwsiga 34111 erdsze2lem2 35189 cvmsval 35251 cvmsss2 35259 neibastop2lem 36343 tailf 36358 pibt2 37400 fin2so 37594 sdclem1 37730 elrfirn 42683 elrfirn2 42684 istopclsd 42688 nacsfix 42700 dnnumch1 43033 inpw 48667 |
Copyright terms: Public domain | W3C validator |