Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4542 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssexg 5247 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
3 | elpwg 4536 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimparc 480 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
6 | 5 | expcom 414 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
7 | 1, 6 | impbid2 225 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: elpw2 5269 elpwi2OLD 5271 pwnss 5272 difelpw 5274 rabelpw 5275 pw2f1olem 8863 fineqvlem 9037 elfir 9174 r1sscl 9543 tskwe 9708 dfac8alem 9785 acni2 9802 fin1ai 10049 fin2i 10051 fin23lem7 10072 fin23lem11 10073 isfin2-2 10075 fin23lem39 10106 isf34lem1 10128 isf34lem2 10129 isf34lem4 10133 isf34lem5 10134 fin1a2lem12 10167 canthnumlem 10404 tsken 10510 tskss 10514 gruss 10552 ismre 17299 mreintcl 17304 mremre 17313 submre 17314 mrcval 17319 mrccl 17320 mrcun 17331 ismri 17340 acsfiel 17363 isacs1i 17366 catcoppccl 17832 catcoppcclOLD 17833 acsdrsel 18261 acsdrscl 18264 acsficl 18265 pmtrval 19059 pmtrrn 19065 istopg 22044 uniopn 22046 iscld 22178 ntrval 22187 clsval 22188 discld 22240 mretopd 22243 neival 22253 isnei 22254 lpval 22290 restdis 22329 ordtbaslem 22339 ordtuni 22341 cndis 22442 tgcmp 22552 hauscmplem 22557 comppfsc 22683 elkgen 22687 xkoopn 22740 elqtop 22848 kqffn 22876 isfbas 22980 filss 23004 snfbas 23017 elfg 23022 ufilss 23056 fixufil 23073 cfinufil 23079 ufinffr 23080 ufilen 23081 fin1aufil 23083 flimclslem 23135 hauspwpwf1 23138 supnfcls 23171 flimfnfcls 23179 ptcmplem1 23203 tsmsfbas 23279 blfvalps 23536 blfps 23559 blf 23560 bcthlem5 24492 minveclem3b 24592 sigaclcuni 32086 sigaclcu2 32088 pwsiga 32098 erdsze2lem2 33166 cvmsval 33228 cvmsss2 33236 neibastop2lem 34549 tailf 34564 pibt2 35588 fin2so 35764 sdclem1 35901 elrfirn 40517 elrfirn2 40518 istopclsd 40522 nacsfix 40534 dnnumch1 40869 inpw 46164 |
Copyright terms: Public domain | W3C validator |