![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4629 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssexg 5341 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
3 | elpwg 4625 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
5 | 2, 4 | syldan 590 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: elpw2 5352 rabelpw 5354 difelpw 5372 pw2f1olem 9142 fineqvlem 9325 elfir 9484 r1sscl 9854 tskwe 10019 dfac8alem 10098 acni2 10115 fin1ai 10362 fin2i 10364 fin23lem7 10385 fin23lem11 10386 isfin2-2 10388 fin23lem39 10419 isf34lem1 10441 isf34lem2 10442 isf34lem4 10446 isf34lem5 10447 fin1a2lem12 10480 canthnumlem 10717 tsken 10823 tskss 10827 gruss 10865 ismre 17648 mreintcl 17653 mremre 17662 submre 17663 mrcval 17668 mrccl 17669 mrcun 17680 ismri 17689 acsfiel 17712 isacs1i 17715 catcoppccl 18184 catcoppcclOLD 18185 acsdrsel 18613 acsdrscl 18616 acsficl 18617 pmtrval 19493 pmtrrn 19499 istopg 22922 uniopn 22924 iscld 23056 ntrval 23065 clsval 23066 discld 23118 mretopd 23121 neival 23131 isnei 23132 lpval 23168 restdis 23207 ordtbaslem 23217 ordtuni 23219 cndis 23320 tgcmp 23430 hauscmplem 23435 comppfsc 23561 elkgen 23565 xkoopn 23618 elqtop 23726 kqffn 23754 isfbas 23858 filss 23882 snfbas 23895 elfg 23900 ufilss 23934 fixufil 23951 cfinufil 23957 ufinffr 23958 ufilen 23959 fin1aufil 23961 flimclslem 24013 hauspwpwf1 24016 supnfcls 24049 flimfnfcls 24057 ptcmplem1 24081 tsmsfbas 24157 blfvalps 24414 blfps 24437 blf 24438 bcthlem5 25381 minveclem3b 25481 sigaclcuni 34082 sigaclcu2 34084 pwsiga 34094 erdsze2lem2 35172 cvmsval 35234 cvmsss2 35242 neibastop2lem 36326 tailf 36341 pibt2 37383 fin2so 37567 sdclem1 37703 elrfirn 42651 elrfirn2 42652 istopclsd 42656 nacsfix 42668 dnnumch1 43001 inpw 48550 |
Copyright terms: Public domain | W3C validator |