| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4555 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexg 5259 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 3 | elpwg 4551 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
| 5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
| 6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2110 Vcvv 3434 ⊆ wss 3900 𝒫 cpw 4548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-in 3907 df-ss 3917 df-pw 4550 |
| This theorem is referenced by: elpw2 5270 rabelpw 5272 difelpw 5290 pw2f1olem 8989 fineqvlem 9145 elfir 9294 r1sscl 9670 tskwe 9835 dfac8alem 9912 acni2 9929 fin1ai 10176 fin2i 10178 fin23lem7 10199 fin23lem11 10200 isfin2-2 10202 fin23lem39 10233 isf34lem1 10255 isf34lem2 10256 isf34lem4 10260 isf34lem5 10261 fin1a2lem12 10294 canthnumlem 10531 tsken 10637 tskss 10641 gruss 10679 ismre 17484 mreintcl 17489 mremre 17498 submre 17499 mrcval 17508 mrccl 17509 mrcun 17520 ismri 17529 acsfiel 17552 isacs1i 17555 catcoppccl 18016 acsdrsel 18441 acsdrscl 18444 acsficl 18445 pmtrval 19356 pmtrrn 19362 istopg 22803 uniopn 22805 iscld 22935 ntrval 22944 clsval 22945 discld 22997 mretopd 23000 neival 23010 isnei 23011 lpval 23047 restdis 23086 ordtbaslem 23096 ordtuni 23098 cndis 23199 tgcmp 23309 hauscmplem 23314 comppfsc 23440 elkgen 23444 xkoopn 23497 elqtop 23605 kqffn 23633 isfbas 23737 filss 23761 snfbas 23774 elfg 23779 ufilss 23813 fixufil 23830 cfinufil 23836 ufinffr 23837 ufilen 23838 fin1aufil 23840 flimclslem 23892 hauspwpwf1 23895 supnfcls 23928 flimfnfcls 23936 ptcmplem1 23960 tsmsfbas 24036 blfvalps 24291 blfps 24314 blf 24315 bcthlem5 25248 minveclem3b 25348 sigaclcuni 34121 sigaclcu2 34123 pwsiga 34133 erdsze2lem2 35216 cvmsval 35278 cvmsss2 35286 neibastop2lem 36373 tailf 36388 pibt2 37430 fin2so 37626 sdclem1 37762 elrfirn 42707 elrfirn2 42708 istopclsd 42712 nacsfix 42724 dnnumch1 43056 inpw 48835 |
| Copyright terms: Public domain | W3C validator |