| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4560 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssexg 5265 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 3 | elpwg 4556 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
| 5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
| 6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-in 3912 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: elpw2 5276 rabelpw 5278 difelpw 5296 pw2f1olem 9005 fineqvlem 9167 elfir 9324 r1sscl 9700 tskwe 9865 dfac8alem 9942 acni2 9959 fin1ai 10206 fin2i 10208 fin23lem7 10229 fin23lem11 10230 isfin2-2 10232 fin23lem39 10263 isf34lem1 10285 isf34lem2 10286 isf34lem4 10290 isf34lem5 10291 fin1a2lem12 10324 canthnumlem 10561 tsken 10667 tskss 10671 gruss 10709 ismre 17510 mreintcl 17515 mremre 17524 submre 17525 mrcval 17534 mrccl 17535 mrcun 17546 ismri 17555 acsfiel 17578 isacs1i 17581 catcoppccl 18042 acsdrsel 18467 acsdrscl 18470 acsficl 18471 pmtrval 19348 pmtrrn 19354 istopg 22798 uniopn 22800 iscld 22930 ntrval 22939 clsval 22940 discld 22992 mretopd 22995 neival 23005 isnei 23006 lpval 23042 restdis 23081 ordtbaslem 23091 ordtuni 23093 cndis 23194 tgcmp 23304 hauscmplem 23309 comppfsc 23435 elkgen 23439 xkoopn 23492 elqtop 23600 kqffn 23628 isfbas 23732 filss 23756 snfbas 23769 elfg 23774 ufilss 23808 fixufil 23825 cfinufil 23831 ufinffr 23832 ufilen 23833 fin1aufil 23835 flimclslem 23887 hauspwpwf1 23890 supnfcls 23923 flimfnfcls 23931 ptcmplem1 23955 tsmsfbas 24031 blfvalps 24287 blfps 24310 blf 24311 bcthlem5 25244 minveclem3b 25344 sigaclcuni 34084 sigaclcu2 34086 pwsiga 34096 erdsze2lem2 35176 cvmsval 35238 cvmsss2 35246 neibastop2lem 36333 tailf 36348 pibt2 37390 fin2so 37586 sdclem1 37722 elrfirn 42668 elrfirn2 42669 istopclsd 42673 nacsfix 42685 dnnumch1 43017 inpw 48797 |
| Copyright terms: Public domain | W3C validator |