Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4539 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssexg 5242 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
3 | elpwg 4533 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimparc 479 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
5 | 2, 4 | syldan 590 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
6 | 5 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
7 | 1, 6 | impbid2 225 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: elpw2 5264 elpwi2OLD 5266 pwnss 5267 difelpw 5269 rabelpw 5270 pw2f1olem 8816 fineqvlem 8966 elfir 9104 r1sscl 9474 tskwe 9639 dfac8alem 9716 acni2 9733 fin1ai 9980 fin2i 9982 fin23lem7 10003 fin23lem11 10004 isfin2-2 10006 fin23lem39 10037 isf34lem1 10059 isf34lem2 10060 isf34lem4 10064 isf34lem5 10065 fin1a2lem12 10098 canthnumlem 10335 tsken 10441 tskss 10445 gruss 10483 ismre 17216 mreintcl 17221 mremre 17230 submre 17231 mrcval 17236 mrccl 17237 mrcun 17248 ismri 17257 acsfiel 17280 isacs1i 17283 catcoppccl 17748 catcoppcclOLD 17749 acsdrsel 18176 acsdrscl 18179 acsficl 18180 pmtrval 18974 pmtrrn 18980 istopg 21952 uniopn 21954 iscld 22086 ntrval 22095 clsval 22096 discld 22148 mretopd 22151 neival 22161 isnei 22162 lpval 22198 restdis 22237 ordtbaslem 22247 ordtuni 22249 cndis 22350 tgcmp 22460 hauscmplem 22465 comppfsc 22591 elkgen 22595 xkoopn 22648 elqtop 22756 kqffn 22784 isfbas 22888 filss 22912 snfbas 22925 elfg 22930 ufilss 22964 fixufil 22981 cfinufil 22987 ufinffr 22988 ufilen 22989 fin1aufil 22991 flimclslem 23043 hauspwpwf1 23046 supnfcls 23079 flimfnfcls 23087 ptcmplem1 23111 tsmsfbas 23187 blfvalps 23444 blfps 23467 blf 23468 bcthlem5 24397 minveclem3b 24497 sigaclcuni 31986 sigaclcu2 31988 pwsiga 31998 erdsze2lem2 33066 cvmsval 33128 cvmsss2 33136 neibastop2lem 34476 tailf 34491 pibt2 35515 fin2so 35691 sdclem1 35828 elrfirn 40433 elrfirn2 40434 istopclsd 40438 nacsfix 40450 dnnumch1 40785 inpw 46052 |
Copyright terms: Public domain | W3C validator |