![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4609 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssexg 5323 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
3 | elpwg 4605 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimparc 480 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
5 | 2, 4 | syldan 591 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
6 | 5 | expcom 414 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
7 | 1, 6 | impbid2 225 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 𝒫 cpw 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 df-pw 4604 |
This theorem is referenced by: elpw2 5345 elpwi2OLD 5347 pwnss 5349 difelpw 5351 rabelpw 5352 pw2f1olem 9075 fineqvlem 9261 elfir 9409 r1sscl 9779 tskwe 9944 dfac8alem 10023 acni2 10040 fin1ai 10287 fin2i 10289 fin23lem7 10310 fin23lem11 10311 isfin2-2 10313 fin23lem39 10344 isf34lem1 10366 isf34lem2 10367 isf34lem4 10371 isf34lem5 10372 fin1a2lem12 10405 canthnumlem 10642 tsken 10748 tskss 10752 gruss 10790 ismre 17533 mreintcl 17538 mremre 17547 submre 17548 mrcval 17553 mrccl 17554 mrcun 17565 ismri 17574 acsfiel 17597 isacs1i 17600 catcoppccl 18066 catcoppcclOLD 18067 acsdrsel 18495 acsdrscl 18498 acsficl 18499 pmtrval 19318 pmtrrn 19324 istopg 22396 uniopn 22398 iscld 22530 ntrval 22539 clsval 22540 discld 22592 mretopd 22595 neival 22605 isnei 22606 lpval 22642 restdis 22681 ordtbaslem 22691 ordtuni 22693 cndis 22794 tgcmp 22904 hauscmplem 22909 comppfsc 23035 elkgen 23039 xkoopn 23092 elqtop 23200 kqffn 23228 isfbas 23332 filss 23356 snfbas 23369 elfg 23374 ufilss 23408 fixufil 23425 cfinufil 23431 ufinffr 23432 ufilen 23433 fin1aufil 23435 flimclslem 23487 hauspwpwf1 23490 supnfcls 23523 flimfnfcls 23531 ptcmplem1 23555 tsmsfbas 23631 blfvalps 23888 blfps 23911 blf 23912 bcthlem5 24844 minveclem3b 24944 sigaclcuni 33111 sigaclcu2 33113 pwsiga 33123 erdsze2lem2 34190 cvmsval 34252 cvmsss2 34260 neibastop2lem 35240 tailf 35255 pibt2 36293 fin2so 36470 sdclem1 36606 elrfirn 41423 elrfirn2 41424 istopclsd 41428 nacsfix 41440 dnnumch1 41776 inpw 47493 |
Copyright terms: Public domain | W3C validator |