Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axpweq | Structured version Visualization version GIF version |
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 5283 is not used by the proof. When ax-pow 5283 is assumed and 𝐴 is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if 𝐴 is a set (see pwexr 7593). (Contributed by NM, 22-Jun-2009.) |
Ref | Expression |
---|---|
axpweq | ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 4552 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴) | |
2 | pweq 4546 | . . . . . 6 ⊢ (𝑥 = 𝒫 𝐴 → 𝒫 𝑥 = 𝒫 𝒫 𝐴) | |
3 | 2 | eleq2d 2824 | . . . . 5 ⊢ (𝑥 = 𝒫 𝐴 → (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴)) |
4 | 3 | spcegv 3526 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥)) |
5 | 1, 4 | mpd 15 | . . 3 ⊢ (𝒫 𝐴 ∈ V → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥) |
6 | elex 3440 | . . . 4 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V) | |
7 | 6 | exlimiv 1934 | . . 3 ⊢ (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V) |
8 | 5, 7 | impbii 208 | . 2 ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥) |
9 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | 9 | elpw2 5264 | . . . 4 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ⊆ 𝑥) |
11 | pwss 4555 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝑥 ↔ ∀𝑦(𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥)) | |
12 | dfss2 3903 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
13 | 12 | imbi1i 349 | . . . . . 6 ⊢ ((𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥) ↔ (∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
14 | 13 | albii 1823 | . . . . 5 ⊢ (∀𝑦(𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
15 | 11, 14 | bitri 274 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝑥 ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
16 | 10, 15 | bitri 274 | . . 3 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
17 | 16 | exbii 1851 | . 2 ⊢ (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
18 | 8, 17 | bitri 274 | 1 ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: grothpw 10513 |
Copyright terms: Public domain | W3C validator |