MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpweq Structured version   Visualization version   GIF version

Theorem axpweq 5309
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 5323 is not used by the proof. When ax-pow 5323 is assumed and 𝐴 is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if 𝐴 is a set (see pwexr 7744). (Contributed by NM, 22-Jun-2009.)
Assertion
Ref Expression
axpweq (𝒫 𝐴 ∈ V ↔ ∃𝑥𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴,𝑦

Proof of Theorem axpweq
StepHypRef Expression
1 pwidg 4586 . . . 4 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴)
2 pweq 4580 . . . . . 6 (𝑥 = 𝒫 𝐴 → 𝒫 𝑥 = 𝒫 𝒫 𝐴)
32eleq2d 2815 . . . . 5 (𝑥 = 𝒫 𝐴 → (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴))
43spcegv 3566 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥))
51, 4mpd 15 . . 3 (𝒫 𝐴 ∈ V → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥)
6 elex 3471 . . . 4 (𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V)
76exlimiv 1930 . . 3 (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V)
85, 7impbii 209 . 2 (𝒫 𝐴 ∈ V ↔ ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥)
9 vex 3454 . . . . 5 𝑥 ∈ V
109elpw2 5292 . . . 4 (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴𝑥)
11 pwss 4589 . . . . 5 (𝒫 𝐴𝑥 ↔ ∀𝑦(𝑦𝐴𝑦𝑥))
12 df-ss 3934 . . . . . . 7 (𝑦𝐴 ↔ ∀𝑧(𝑧𝑦𝑧𝐴))
1312imbi1i 349 . . . . . 6 ((𝑦𝐴𝑦𝑥) ↔ (∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
1413albii 1819 . . . . 5 (∀𝑦(𝑦𝐴𝑦𝑥) ↔ ∀𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
1511, 14bitri 275 . . . 4 (𝒫 𝐴𝑥 ↔ ∀𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
1610, 15bitri 275 . . 3 (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∀𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
1716exbii 1848 . 2 (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∃𝑥𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
188, 17bitri 275 1 (𝒫 𝐴 ∈ V ↔ ∃𝑥𝑦(∀𝑧(𝑧𝑦𝑧𝐴) → 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568
This theorem is referenced by:  grothpw  10786
  Copyright terms: Public domain W3C validator