Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafv | Structured version Visualization version GIF version |
Description: An element of the class 𝑃 of all preimages of function values. (Contributed by AV, 8-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
elsetpreimafv | ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | elsetpreimafvb 44836 | . 2 ⊢ (𝑆 ∈ 𝑃 → (𝑆 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
3 | 2 | ibi 266 | 1 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {csn 4561 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 |
This theorem is referenced by: elsetpreimafvssdm 44838 fvelsetpreimafv 44839 elsetpreimafvbi 44843 imasetpreimafvbijlemfo 44857 |
Copyright terms: Public domain | W3C validator |