| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafv | Structured version Visualization version GIF version | ||
| Description: An element of the class 𝑃 of all preimages of function values. (Contributed by AV, 8-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| elsetpreimafv | ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | elsetpreimafvb 47365 | . 2 ⊢ (𝑆 ∈ 𝑃 → (𝑆 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 3 | 2 | ibi 267 | 1 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 {csn 4606 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 |
| This theorem is referenced by: elsetpreimafvssdm 47367 fvelsetpreimafv 47368 elsetpreimafvbi 47372 imasetpreimafvbijlemfo 47386 |
| Copyright terms: Public domain | W3C validator |