Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvssdm Structured version   Visualization version   GIF version

Theorem elsetpreimafvssdm 47387
Description: An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvssdm ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem elsetpreimafvssdm
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafv 47386 . . 3 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
3 cnvimass 6053 . . . . . . . . 9 (𝐹 “ {(𝐹𝑥)}) ⊆ dom 𝐹
4 fndm 6621 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
53, 4sseqtrid 3989 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴)
65adantr 480 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴)
7 sseq1 3972 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑆𝐴 ↔ (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴))
86, 7syl5ibrcom 247 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → 𝑆𝐴))
98expcom 413 . . . . 5 (𝑥𝐴 → (𝐹 Fn 𝐴 → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → 𝑆𝐴)))
109com23 86 . . . 4 (𝑥𝐴 → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴𝑆𝐴)))
1110rexlimiv 3127 . . 3 (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴𝑆𝐴))
122, 11syl 17 . 2 (𝑆𝑃 → (𝐹 Fn 𝐴𝑆𝐴))
1312impcom 407 1 ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3914  {csn 4589  ccnv 5637  dom cdm 5638  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fn 6514
This theorem is referenced by:  preimafvsspwdm  47390  uniimaelsetpreimafv  47397
  Copyright terms: Public domain W3C validator