Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvssdm Structured version   Visualization version   GIF version

Theorem elsetpreimafvssdm 47260
Description: An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvssdm ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem elsetpreimafvssdm
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafv 47259 . . 3 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
3 cnvimass 6111 . . . . . . . . 9 (𝐹 “ {(𝐹𝑥)}) ⊆ dom 𝐹
4 fndm 6682 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
53, 4sseqtrid 4061 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴)
65adantr 480 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴)
7 sseq1 4034 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑆𝐴 ↔ (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴))
86, 7syl5ibrcom 247 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → 𝑆𝐴))
98expcom 413 . . . . 5 (𝑥𝐴 → (𝐹 Fn 𝐴 → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → 𝑆𝐴)))
109com23 86 . . . 4 (𝑥𝐴 → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴𝑆𝐴)))
1110rexlimiv 3154 . . 3 (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴𝑆𝐴))
122, 11syl 17 . 2 (𝑆𝑃 → (𝐹 Fn 𝐴𝑆𝐴))
1312impcom 407 1 ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  wss 3976  {csn 4648  ccnv 5699  dom cdm 5700  cima 5703   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fn 6576
This theorem is referenced by:  preimafvsspwdm  47263  uniimaelsetpreimafv  47270
  Copyright terms: Public domain W3C validator