Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafvssdm | Structured version Visualization version GIF version |
Description: An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
elsetpreimafvssdm | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | elsetpreimafv 44837 | . . 3 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
3 | cnvimass 5989 | . . . . . . . . 9 ⊢ (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ dom 𝐹 | |
4 | fndm 6536 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 3, 4 | sseqtrid 3973 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴) |
6 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴) |
7 | sseq1 3946 | . . . . . . 7 ⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑆 ⊆ 𝐴 ↔ (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴)) | |
8 | 6, 7 | syl5ibrcom 246 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → 𝑆 ⊆ 𝐴)) |
9 | 8 | expcom 414 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹 Fn 𝐴 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → 𝑆 ⊆ 𝐴))) |
10 | 9 | com23 86 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴))) |
11 | 10 | rexlimiv 3209 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴)) |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝑆 ∈ 𝑃 → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴)) |
13 | 12 | impcom 408 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ⊆ wss 3887 {csn 4561 ◡ccnv 5588 dom cdm 5589 “ cima 5592 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fn 6436 |
This theorem is referenced by: preimafvsspwdm 44841 uniimaelsetpreimafv 44848 |
Copyright terms: Public domain | W3C validator |