![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafvssdm | Structured version Visualization version GIF version |
Description: An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
elsetpreimafvssdm | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | elsetpreimafv 46353 | . . 3 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
3 | cnvimass 6081 | . . . . . . . . 9 ⊢ (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ dom 𝐹 | |
4 | fndm 6653 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 3, 4 | sseqtrid 4035 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴) |
6 | 5 | adantr 479 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴) |
7 | sseq1 4008 | . . . . . . 7 ⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑆 ⊆ 𝐴 ↔ (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴)) | |
8 | 6, 7 | syl5ibrcom 246 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → 𝑆 ⊆ 𝐴)) |
9 | 8 | expcom 412 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹 Fn 𝐴 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → 𝑆 ⊆ 𝐴))) |
10 | 9 | com23 86 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴))) |
11 | 10 | rexlimiv 3146 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴)) |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝑆 ∈ 𝑃 → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴)) |
13 | 12 | impcom 406 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {cab 2707 ∃wrex 3068 ⊆ wss 3949 {csn 4629 ◡ccnv 5676 dom cdm 5677 “ cima 5680 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fn 6547 |
This theorem is referenced by: preimafvsspwdm 46357 uniimaelsetpreimafv 46364 |
Copyright terms: Public domain | W3C validator |