| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafvssdm | Structured version Visualization version GIF version | ||
| Description: An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| elsetpreimafvssdm | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | elsetpreimafv 47377 | . . 3 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 3 | cnvimass 6099 | . . . . . . . . 9 ⊢ (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ dom 𝐹 | |
| 4 | fndm 6670 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 3, 4 | sseqtrid 4025 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴) |
| 7 | sseq1 4008 | . . . . . . 7 ⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑆 ⊆ 𝐴 ↔ (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴)) | |
| 8 | 6, 7 | syl5ibrcom 247 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → 𝑆 ⊆ 𝐴)) |
| 9 | 8 | expcom 413 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹 Fn 𝐴 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → 𝑆 ⊆ 𝐴))) |
| 10 | 9 | com23 86 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴))) |
| 11 | 10 | rexlimiv 3147 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴)) |
| 12 | 2, 11 | syl 17 | . 2 ⊢ (𝑆 ∈ 𝑃 → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴)) |
| 13 | 12 | impcom 407 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∃wrex 3069 ⊆ wss 3950 {csn 4625 ◡ccnv 5683 dom cdm 5684 “ cima 5687 Fn wfn 6555 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-fn 6563 |
| This theorem is referenced by: preimafvsspwdm 47381 uniimaelsetpreimafv 47388 |
| Copyright terms: Public domain | W3C validator |