![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafvssdm | Structured version Visualization version GIF version |
Description: An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
elsetpreimafvssdm | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | elsetpreimafv 46563 | . . 3 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
3 | cnvimass 6071 | . . . . . . . . 9 ⊢ (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ dom 𝐹 | |
4 | fndm 6643 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 3, 4 | sseqtrid 4027 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴) |
7 | sseq1 4000 | . . . . . . 7 ⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑆 ⊆ 𝐴 ↔ (◡𝐹 “ {(𝐹‘𝑥)}) ⊆ 𝐴)) | |
8 | 6, 7 | syl5ibrcom 246 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → 𝑆 ⊆ 𝐴)) |
9 | 8 | expcom 413 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹 Fn 𝐴 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → 𝑆 ⊆ 𝐴))) |
10 | 9 | com23 86 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴))) |
11 | 10 | rexlimiv 3140 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴)) |
12 | 2, 11 | syl 17 | . 2 ⊢ (𝑆 ∈ 𝑃 → (𝐹 Fn 𝐴 → 𝑆 ⊆ 𝐴)) |
13 | 12 | impcom 407 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 ∃wrex 3062 ⊆ wss 3941 {csn 4621 ◡ccnv 5666 dom cdm 5667 “ cima 5670 Fn wfn 6529 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-fn 6537 |
This theorem is referenced by: preimafvsspwdm 46567 uniimaelsetpreimafv 46574 |
Copyright terms: Public domain | W3C validator |