Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemfo Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemfo 47330
Description: Lemma for imasetpreimafvbij 47331: the mapping 𝐻 is a function onto the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemfo ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃onto→(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑉,𝑝
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑉(𝑥,𝑧)

Proof of Theorem imasetpreimafvbijlemfo
Dummy variables 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
2 fundcmpsurinj.h . . . 4 𝐻 = (𝑝𝑃 (𝐹𝑝))
31, 2imasetpreimafvbijlemf 47326 . . 3 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
43adantr 480 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃⟶(𝐹𝐴))
51preimafvelsetpreimafv 47313 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴𝑉𝑎𝐴) → (𝐹 “ {(𝐹𝑎)}) ∈ 𝑃)
653expa 1117 . . . . . . . 8 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹 “ {(𝐹𝑎)}) ∈ 𝑃)
7 imaeq2 6076 . . . . . . . . . . 11 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑝) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
87unieqd 4925 . . . . . . . . . 10 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑝) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
98eqeq2d 2746 . . . . . . . . 9 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → ((𝐹𝑎) = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)}))))
109adantl 481 . . . . . . . 8 ((((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) ∧ 𝑝 = (𝐹 “ {(𝐹𝑎)})) → ((𝐹𝑎) = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)}))))
11 uniimaprimaeqfv 47307 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑎))
1211adantlr 715 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑎))
1312eqcomd 2741 . . . . . . . 8 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
146, 10, 13rspcedvd 3624 . . . . . . 7 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → ∃𝑝𝑃 (𝐹𝑎) = (𝐹𝑝))
15 eqeq1 2739 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (𝑦 = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹𝑝)))
1615eqcoms 2743 . . . . . . . 8 ((𝐹𝑎) = 𝑦 → (𝑦 = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹𝑝)))
1716rexbidv 3177 . . . . . . 7 ((𝐹𝑎) = 𝑦 → (∃𝑝𝑃 𝑦 = (𝐹𝑝) ↔ ∃𝑝𝑃 (𝐹𝑎) = (𝐹𝑝)))
1814, 17syl5ibrcom 247 . . . . . 6 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → ((𝐹𝑎) = 𝑦 → ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
1918rexlimdva 3153 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 → ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
208eqcomd 2741 . . . . . . . . . . 11 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑝))
2113, 20sylan9eq 2795 . . . . . . . . . 10 ((((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) ∧ 𝑝 = (𝐹 “ {(𝐹𝑎)})) → (𝐹𝑎) = (𝐹𝑝))
2221ex 412 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑎) = (𝐹𝑝)))
2322reximdva 3166 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}) → ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝)))
241elsetpreimafv 47310 . . . . . . . . 9 (𝑝𝑃 → ∃𝑥𝐴 𝑝 = (𝐹 “ {(𝐹𝑥)}))
25 fveq2 6907 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
2625sneqd 4643 . . . . . . . . . . . 12 (𝑎 = 𝑥 → {(𝐹𝑎)} = {(𝐹𝑥)})
2726imaeq2d 6080 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝐹 “ {(𝐹𝑎)}) = (𝐹 “ {(𝐹𝑥)}))
2827eqeq2d 2746 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑝 = (𝐹 “ {(𝐹𝑎)}) ↔ 𝑝 = (𝐹 “ {(𝐹𝑥)})))
2928cbvrexvw 3236 . . . . . . . . 9 (∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}) ↔ ∃𝑥𝐴 𝑝 = (𝐹 “ {(𝐹𝑥)}))
3024, 29sylibr 234 . . . . . . . 8 (𝑝𝑃 → ∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}))
3123, 30impel 505 . . . . . . 7 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑝𝑃) → ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝))
32 eqeq2 2747 . . . . . . . 8 (𝑦 = (𝐹𝑝) → ((𝐹𝑎) = 𝑦 ↔ (𝐹𝑎) = (𝐹𝑝)))
3332rexbidv 3177 . . . . . . 7 (𝑦 = (𝐹𝑝) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 ↔ ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝)))
3431, 33syl5ibrcom 247 . . . . . 6 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑝𝑃) → (𝑦 = (𝐹𝑝) → ∃𝑎𝐴 (𝐹𝑎) = 𝑦))
3534rexlimdva 3153 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑝𝑃 𝑦 = (𝐹𝑝) → ∃𝑎𝐴 (𝐹𝑎) = 𝑦))
3619, 35impbid 212 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 ↔ ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
3736abbidv 2806 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦} = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)})
38 fnfun 6669 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
39 fndm 6672 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
40 eqimss2 4055 . . . . . . 7 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
4139, 40syl 17 . . . . . 6 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
4238, 41jca 511 . . . . 5 (𝐹 Fn 𝐴 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
4342adantr 480 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
44 dfimafn 6971 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦})
4543, 44syl 17 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → (𝐹𝐴) = {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦})
462rnmpt 5971 . . . 4 ran 𝐻 = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)}
4746a1i 11 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → ran 𝐻 = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)})
4837, 45, 473eqtr4rd 2786 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → ran 𝐻 = (𝐹𝐴))
49 dffo2 6825 . 2 (𝐻:𝑃onto→(𝐹𝐴) ↔ (𝐻:𝑃⟶(𝐹𝐴) ∧ ran 𝐻 = (𝐹𝐴)))
504, 48, 49sylanbrc 583 1 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wrex 3068  wss 3963  {csn 4631   cuni 4912  cmpt 5231  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  Fun wfun 6557   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571
This theorem is referenced by:  imasetpreimafvbij  47331
  Copyright terms: Public domain W3C validator