Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemfo Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemfo 44290
Description: Lemma for imasetpreimafvbij 44291: the mapping 𝐻 is a function onto the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemfo ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃onto→(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑉,𝑝
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑉(𝑥,𝑧)

Proof of Theorem imasetpreimafvbijlemfo
Dummy variables 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
2 fundcmpsurinj.h . . . 4 𝐻 = (𝑝𝑃 (𝐹𝑝))
31, 2imasetpreimafvbijlemf 44286 . . 3 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
43adantr 484 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃⟶(𝐹𝐴))
51preimafvelsetpreimafv 44273 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴𝑉𝑎𝐴) → (𝐹 “ {(𝐹𝑎)}) ∈ 𝑃)
653expa 1115 . . . . . . . 8 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹 “ {(𝐹𝑎)}) ∈ 𝑃)
7 imaeq2 5897 . . . . . . . . . . 11 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑝) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
87unieqd 4812 . . . . . . . . . 10 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑝) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
98eqeq2d 2769 . . . . . . . . 9 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → ((𝐹𝑎) = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)}))))
109adantl 485 . . . . . . . 8 ((((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) ∧ 𝑝 = (𝐹 “ {(𝐹𝑎)})) → ((𝐹𝑎) = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)}))))
11 uniimaprimaeqfv 44267 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑎))
1211adantlr 714 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑎))
1312eqcomd 2764 . . . . . . . 8 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
146, 10, 13rspcedvd 3544 . . . . . . 7 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → ∃𝑝𝑃 (𝐹𝑎) = (𝐹𝑝))
15 eqeq1 2762 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (𝑦 = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹𝑝)))
1615eqcoms 2766 . . . . . . . 8 ((𝐹𝑎) = 𝑦 → (𝑦 = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹𝑝)))
1716rexbidv 3221 . . . . . . 7 ((𝐹𝑎) = 𝑦 → (∃𝑝𝑃 𝑦 = (𝐹𝑝) ↔ ∃𝑝𝑃 (𝐹𝑎) = (𝐹𝑝)))
1814, 17syl5ibrcom 250 . . . . . 6 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → ((𝐹𝑎) = 𝑦 → ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
1918rexlimdva 3208 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 → ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
208eqcomd 2764 . . . . . . . . . . 11 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑝))
2113, 20sylan9eq 2813 . . . . . . . . . 10 ((((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) ∧ 𝑝 = (𝐹 “ {(𝐹𝑎)})) → (𝐹𝑎) = (𝐹𝑝))
2221ex 416 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑎) = (𝐹𝑝)))
2322reximdva 3198 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}) → ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝)))
241elsetpreimafv 44270 . . . . . . . . 9 (𝑝𝑃 → ∃𝑥𝐴 𝑝 = (𝐹 “ {(𝐹𝑥)}))
25 fveq2 6658 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
2625sneqd 4534 . . . . . . . . . . . 12 (𝑎 = 𝑥 → {(𝐹𝑎)} = {(𝐹𝑥)})
2726imaeq2d 5901 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝐹 “ {(𝐹𝑎)}) = (𝐹 “ {(𝐹𝑥)}))
2827eqeq2d 2769 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑝 = (𝐹 “ {(𝐹𝑎)}) ↔ 𝑝 = (𝐹 “ {(𝐹𝑥)})))
2928cbvrexvw 3362 . . . . . . . . 9 (∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}) ↔ ∃𝑥𝐴 𝑝 = (𝐹 “ {(𝐹𝑥)}))
3024, 29sylibr 237 . . . . . . . 8 (𝑝𝑃 → ∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}))
3123, 30impel 509 . . . . . . 7 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑝𝑃) → ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝))
32 eqeq2 2770 . . . . . . . 8 (𝑦 = (𝐹𝑝) → ((𝐹𝑎) = 𝑦 ↔ (𝐹𝑎) = (𝐹𝑝)))
3332rexbidv 3221 . . . . . . 7 (𝑦 = (𝐹𝑝) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 ↔ ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝)))
3431, 33syl5ibrcom 250 . . . . . 6 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑝𝑃) → (𝑦 = (𝐹𝑝) → ∃𝑎𝐴 (𝐹𝑎) = 𝑦))
3534rexlimdva 3208 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑝𝑃 𝑦 = (𝐹𝑝) → ∃𝑎𝐴 (𝐹𝑎) = 𝑦))
3619, 35impbid 215 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 ↔ ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
3736abbidv 2822 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦} = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)})
38 fnfun 6434 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
39 fndm 6436 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
40 eqimss2 3949 . . . . . . 7 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
4139, 40syl 17 . . . . . 6 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
4238, 41jca 515 . . . . 5 (𝐹 Fn 𝐴 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
4342adantr 484 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
44 dfimafn 6716 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦})
4543, 44syl 17 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → (𝐹𝐴) = {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦})
462rnmpt 5796 . . . 4 ran 𝐻 = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)}
4746a1i 11 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → ran 𝐻 = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)})
4837, 45, 473eqtr4rd 2804 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → ran 𝐻 = (𝐹𝐴))
49 dffo2 6580 . 2 (𝐻:𝑃onto→(𝐹𝐴) ↔ (𝐻:𝑃⟶(𝐹𝐴) ∧ ran 𝐻 = (𝐹𝐴)))
504, 48, 49sylanbrc 586 1 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2735  wrex 3071  wss 3858  {csn 4522   cuni 4798  cmpt 5112  ccnv 5523  dom cdm 5524  ran crn 5525  cima 5527  Fun wfun 6329   Fn wfn 6330  wf 6331  ontowfo 6333  cfv 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343
This theorem is referenced by:  imasetpreimafvbij  44291
  Copyright terms: Public domain W3C validator