Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemfo Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemfo 47406
Description: Lemma for imasetpreimafvbij 47407: the mapping 𝐻 is a function onto the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemfo ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃onto→(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑉,𝑝
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑉(𝑥,𝑧)

Proof of Theorem imasetpreimafvbijlemfo
Dummy variables 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
2 fundcmpsurinj.h . . . 4 𝐻 = (𝑝𝑃 (𝐹𝑝))
31, 2imasetpreimafvbijlemf 47402 . . 3 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
43adantr 480 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃⟶(𝐹𝐴))
51preimafvelsetpreimafv 47389 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴𝑉𝑎𝐴) → (𝐹 “ {(𝐹𝑎)}) ∈ 𝑃)
653expa 1118 . . . . . . . 8 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹 “ {(𝐹𝑎)}) ∈ 𝑃)
7 imaeq2 6027 . . . . . . . . . . 11 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑝) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
87unieqd 4884 . . . . . . . . . 10 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑝) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
98eqeq2d 2740 . . . . . . . . 9 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → ((𝐹𝑎) = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)}))))
109adantl 481 . . . . . . . 8 ((((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) ∧ 𝑝 = (𝐹 “ {(𝐹𝑎)})) → ((𝐹𝑎) = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)}))))
11 uniimaprimaeqfv 47383 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑎))
1211adantlr 715 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑎))
1312eqcomd 2735 . . . . . . . 8 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝐹𝑎) = (𝐹 “ (𝐹 “ {(𝐹𝑎)})))
146, 10, 13rspcedvd 3590 . . . . . . 7 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → ∃𝑝𝑃 (𝐹𝑎) = (𝐹𝑝))
15 eqeq1 2733 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (𝑦 = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹𝑝)))
1615eqcoms 2737 . . . . . . . 8 ((𝐹𝑎) = 𝑦 → (𝑦 = (𝐹𝑝) ↔ (𝐹𝑎) = (𝐹𝑝)))
1716rexbidv 3157 . . . . . . 7 ((𝐹𝑎) = 𝑦 → (∃𝑝𝑃 𝑦 = (𝐹𝑝) ↔ ∃𝑝𝑃 (𝐹𝑎) = (𝐹𝑝)))
1814, 17syl5ibrcom 247 . . . . . 6 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → ((𝐹𝑎) = 𝑦 → ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
1918rexlimdva 3134 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 → ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
208eqcomd 2735 . . . . . . . . . . 11 (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹 “ (𝐹 “ {(𝐹𝑎)})) = (𝐹𝑝))
2113, 20sylan9eq 2784 . . . . . . . . . 10 ((((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) ∧ 𝑝 = (𝐹 “ {(𝐹𝑎)})) → (𝐹𝑎) = (𝐹𝑝))
2221ex 412 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑎𝐴) → (𝑝 = (𝐹 “ {(𝐹𝑎)}) → (𝐹𝑎) = (𝐹𝑝)))
2322reximdva 3146 . . . . . . . 8 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}) → ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝)))
241elsetpreimafv 47386 . . . . . . . . 9 (𝑝𝑃 → ∃𝑥𝐴 𝑝 = (𝐹 “ {(𝐹𝑥)}))
25 fveq2 6858 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
2625sneqd 4601 . . . . . . . . . . . 12 (𝑎 = 𝑥 → {(𝐹𝑎)} = {(𝐹𝑥)})
2726imaeq2d 6031 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝐹 “ {(𝐹𝑎)}) = (𝐹 “ {(𝐹𝑥)}))
2827eqeq2d 2740 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑝 = (𝐹 “ {(𝐹𝑎)}) ↔ 𝑝 = (𝐹 “ {(𝐹𝑥)})))
2928cbvrexvw 3216 . . . . . . . . 9 (∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}) ↔ ∃𝑥𝐴 𝑝 = (𝐹 “ {(𝐹𝑥)}))
3024, 29sylibr 234 . . . . . . . 8 (𝑝𝑃 → ∃𝑎𝐴 𝑝 = (𝐹 “ {(𝐹𝑎)}))
3123, 30impel 505 . . . . . . 7 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑝𝑃) → ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝))
32 eqeq2 2741 . . . . . . . 8 (𝑦 = (𝐹𝑝) → ((𝐹𝑎) = 𝑦 ↔ (𝐹𝑎) = (𝐹𝑝)))
3332rexbidv 3157 . . . . . . 7 (𝑦 = (𝐹𝑝) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 ↔ ∃𝑎𝐴 (𝐹𝑎) = (𝐹𝑝)))
3431, 33syl5ibrcom 247 . . . . . 6 (((𝐹 Fn 𝐴𝐴𝑉) ∧ 𝑝𝑃) → (𝑦 = (𝐹𝑝) → ∃𝑎𝐴 (𝐹𝑎) = 𝑦))
3534rexlimdva 3134 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑝𝑃 𝑦 = (𝐹𝑝) → ∃𝑎𝐴 (𝐹𝑎) = 𝑦))
3619, 35impbid 212 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (∃𝑎𝐴 (𝐹𝑎) = 𝑦 ↔ ∃𝑝𝑃 𝑦 = (𝐹𝑝)))
3736abbidv 2795 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦} = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)})
38 fnfun 6618 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
39 fndm 6621 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
40 eqimss2 4006 . . . . . . 7 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
4139, 40syl 17 . . . . . 6 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
4238, 41jca 511 . . . . 5 (𝐹 Fn 𝐴 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
4342adantr 480 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
44 dfimafn 6923 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦})
4543, 44syl 17 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → (𝐹𝐴) = {𝑦 ∣ ∃𝑎𝐴 (𝐹𝑎) = 𝑦})
462rnmpt 5921 . . . 4 ran 𝐻 = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)}
4746a1i 11 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → ran 𝐻 = {𝑦 ∣ ∃𝑝𝑃 𝑦 = (𝐹𝑝)})
4837, 45, 473eqtr4rd 2775 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → ran 𝐻 = (𝐹𝐴))
49 dffo2 6776 . 2 (𝐻:𝑃onto→(𝐹𝐴) ↔ (𝐻:𝑃⟶(𝐹𝐴) ∧ ran 𝐻 = (𝐹𝐴)))
504, 48, 49sylanbrc 583 1 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3914  {csn 4589   cuni 4871  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  imasetpreimafvbij  47407
  Copyright terms: Public domain W3C validator