Step | Hyp | Ref
| Expression |
1 | | fundcmpsurinj.p |
. . . 4
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
2 | | fundcmpsurinj.h |
. . . 4
⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
3 | 1, 2 | imasetpreimafvbijlemf 44741 |
. . 3
⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) |
4 | 3 | adantr 480 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃⟶(𝐹 “ 𝐴)) |
5 | 1 | preimafvelsetpreimafv 44728 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑎)}) ∈ 𝑃) |
6 | 5 | 3expa 1116 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑎 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑎)}) ∈ 𝑃) |
7 | | imaeq2 5954 |
. . . . . . . . . . 11
⊢ (𝑝 = (◡𝐹 “ {(𝐹‘𝑎)}) → (𝐹 “ 𝑝) = (𝐹 “ (◡𝐹 “ {(𝐹‘𝑎)}))) |
8 | 7 | unieqd 4850 |
. . . . . . . . . 10
⊢ (𝑝 = (◡𝐹 “ {(𝐹‘𝑎)}) → ∪
(𝐹 “ 𝑝) = ∪
(𝐹 “ (◡𝐹 “ {(𝐹‘𝑎)}))) |
9 | 8 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑝 = (◡𝐹 “ {(𝐹‘𝑎)}) → ((𝐹‘𝑎) = ∪ (𝐹 “ 𝑝) ↔ (𝐹‘𝑎) = ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑎)})))) |
10 | 9 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 = (◡𝐹 “ {(𝐹‘𝑎)})) → ((𝐹‘𝑎) = ∪ (𝐹 “ 𝑝) ↔ (𝐹‘𝑎) = ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑎)})))) |
11 | | uniimaprimaeqfv 44722 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑎 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑎)})) = (𝐹‘𝑎)) |
12 | 11 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑎 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑎)})) = (𝐹‘𝑎)) |
13 | 12 | eqcomd 2744 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) = ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑎)}))) |
14 | 6, 10, 13 | rspcedvd 3555 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑎 ∈ 𝐴) → ∃𝑝 ∈ 𝑃 (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝)) |
15 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑎) → (𝑦 = ∪ (𝐹 “ 𝑝) ↔ (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝))) |
16 | 15 | eqcoms 2746 |
. . . . . . . 8
⊢ ((𝐹‘𝑎) = 𝑦 → (𝑦 = ∪ (𝐹 “ 𝑝) ↔ (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝))) |
17 | 16 | rexbidv 3225 |
. . . . . . 7
⊢ ((𝐹‘𝑎) = 𝑦 → (∃𝑝 ∈ 𝑃 𝑦 = ∪ (𝐹 “ 𝑝) ↔ ∃𝑝 ∈ 𝑃 (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝))) |
18 | 14, 17 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑎 ∈ 𝐴) → ((𝐹‘𝑎) = 𝑦 → ∃𝑝 ∈ 𝑃 𝑦 = ∪ (𝐹 “ 𝑝))) |
19 | 18 | rexlimdva 3212 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑦 → ∃𝑝 ∈ 𝑃 𝑦 = ∪ (𝐹 “ 𝑝))) |
20 | 8 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝑝 = (◡𝐹 “ {(𝐹‘𝑎)}) → ∪
(𝐹 “ (◡𝐹 “ {(𝐹‘𝑎)})) = ∪ (𝐹 “ 𝑝)) |
21 | 13, 20 | sylan9eq 2799 |
. . . . . . . . . 10
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 = (◡𝐹 “ {(𝐹‘𝑎)})) → (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝)) |
22 | 21 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑎 ∈ 𝐴) → (𝑝 = (◡𝐹 “ {(𝐹‘𝑎)}) → (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝))) |
23 | 22 | reximdva 3202 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (∃𝑎 ∈ 𝐴 𝑝 = (◡𝐹 “ {(𝐹‘𝑎)}) → ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝))) |
24 | 1 | elsetpreimafv 44725 |
. . . . . . . . 9
⊢ (𝑝 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑝 = (◡𝐹 “ {(𝐹‘𝑥)})) |
25 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) |
26 | 25 | sneqd 4570 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → {(𝐹‘𝑎)} = {(𝐹‘𝑥)}) |
27 | 26 | imaeq2d 5958 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (◡𝐹 “ {(𝐹‘𝑎)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
28 | 27 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑝 = (◡𝐹 “ {(𝐹‘𝑎)}) ↔ 𝑝 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
29 | 28 | cbvrexvw 3373 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
𝐴 𝑝 = (◡𝐹 “ {(𝐹‘𝑎)}) ↔ ∃𝑥 ∈ 𝐴 𝑝 = (◡𝐹 “ {(𝐹‘𝑥)})) |
30 | 24, 29 | sylibr 233 |
. . . . . . . 8
⊢ (𝑝 ∈ 𝑃 → ∃𝑎 ∈ 𝐴 𝑝 = (◡𝐹 “ {(𝐹‘𝑎)})) |
31 | 23, 30 | impel 505 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑝 ∈ 𝑃) → ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝)) |
32 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑦 = ∪
(𝐹 “ 𝑝) → ((𝐹‘𝑎) = 𝑦 ↔ (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝))) |
33 | 32 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑦 = ∪
(𝐹 “ 𝑝) → (∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑦 ↔ ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = ∪ (𝐹 “ 𝑝))) |
34 | 31, 33 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑝 ∈ 𝑃) → (𝑦 = ∪ (𝐹 “ 𝑝) → ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑦)) |
35 | 34 | rexlimdva 3212 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (∃𝑝 ∈ 𝑃 𝑦 = ∪ (𝐹 “ 𝑝) → ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑦)) |
36 | 19, 35 | impbid 211 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑦 ↔ ∃𝑝 ∈ 𝑃 𝑦 = ∪ (𝐹 “ 𝑝))) |
37 | 36 | abbidv 2808 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑦 ∣ ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑦} = {𝑦 ∣ ∃𝑝 ∈ 𝑃 𝑦 = ∪ (𝐹 “ 𝑝)}) |
38 | | fnfun 6517 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
39 | | fndm 6520 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
40 | | eqimss2 3974 |
. . . . . . 7
⊢ (dom
𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) |
41 | 39, 40 | syl 17 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → 𝐴 ⊆ dom 𝐹) |
42 | 38, 41 | jca 511 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
43 | 42 | adantr 480 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
44 | | dfimafn 6814 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑦}) |
45 | 43, 44 | syl 17 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑦}) |
46 | 2 | rnmpt 5853 |
. . . 4
⊢ ran 𝐻 = {𝑦 ∣ ∃𝑝 ∈ 𝑃 𝑦 = ∪ (𝐹 “ 𝑝)} |
47 | 46 | a1i 11 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → ran 𝐻 = {𝑦 ∣ ∃𝑝 ∈ 𝑃 𝑦 = ∪ (𝐹 “ 𝑝)}) |
48 | 37, 45, 47 | 3eqtr4rd 2789 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → ran 𝐻 = (𝐹 “ 𝐴)) |
49 | | dffo2 6676 |
. 2
⊢ (𝐻:𝑃–onto→(𝐹 “ 𝐴) ↔ (𝐻:𝑃⟶(𝐹 “ 𝐴) ∧ ran 𝐻 = (𝐹 “ 𝐴))) |
50 | 4, 48, 49 | sylanbrc 582 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–onto→(𝐹 “ 𝐴)) |