| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelsetpreimafv | Structured version Visualization version GIF version | ||
| Description: There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| fvelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimafvsnel 47380 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) | |
| 2 | 1 | adantrr 717 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) |
| 3 | eleq2 2817 | . . . . . . 7 ⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}))) | |
| 4 | 3 | ad2antll 729 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 5 | 2, 4 | mpbird 257 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑥 ∈ 𝑆) |
| 6 | simprr 772 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | |
| 7 | 5, 6 | jca 511 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → (𝑥 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 8 | 7 | ex 412 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) → (𝑥 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})))) |
| 9 | 8 | reximdv2 3143 | . 2 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 10 | setpreimafvex.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 11 | 10 | elsetpreimafv 47386 | . 2 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 12 | 9, 11 | impel 505 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {csn 4589 ◡ccnv 5637 “ cima 5641 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: imaelsetpreimafv 47396 |
| Copyright terms: Public domain | W3C validator |