![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelsetpreimafv | Structured version Visualization version GIF version |
Description: There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
fvelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimafvsnel 46347 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) | |
2 | 1 | adantrr 713 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) |
3 | eleq2 2820 | . . . . . . 7 ⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}))) | |
4 | 3 | ad2antll 725 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}))) |
5 | 2, 4 | mpbird 256 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑥 ∈ 𝑆) |
6 | simprr 769 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | |
7 | 5, 6 | jca 510 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → (𝑥 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
8 | 7 | ex 411 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) → (𝑥 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})))) |
9 | 8 | reximdv2 3162 | . 2 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
10 | setpreimafvex.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
11 | 10 | elsetpreimafv 46353 | . 2 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
12 | 9, 11 | impel 504 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {cab 2707 ∃wrex 3068 {csn 4629 ◡ccnv 5676 “ cima 5680 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: imaelsetpreimafv 46363 |
Copyright terms: Public domain | W3C validator |