Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelsetpreimafv | Structured version Visualization version GIF version |
Description: There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
fvelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimafvsnel 44831 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) | |
2 | 1 | adantrr 714 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) |
3 | eleq2 2827 | . . . . . . 7 ⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}))) | |
4 | 3 | ad2antll 726 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}))) |
5 | 2, 4 | mpbird 256 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑥 ∈ 𝑆) |
6 | simprr 770 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | |
7 | 5, 6 | jca 512 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) → (𝑥 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
8 | 7 | ex 413 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) → (𝑥 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})))) |
9 | 8 | reximdv2 3199 | . 2 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
10 | setpreimafvex.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
11 | 10 | elsetpreimafv 44837 | . 2 ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
12 | 9, 11 | impel 506 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {csn 4561 ◡ccnv 5588 “ cima 5592 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: imaelsetpreimafv 44847 |
Copyright terms: Public domain | W3C validator |