Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelsetpreimafv Structured version   Visualization version   GIF version

Theorem fvelsetpreimafv 47379
Description: There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
fvelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem fvelsetpreimafv
StepHypRef Expression
1 preimafvsnel 47371 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
21adantrr 717 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
3 eleq2 2829 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑥𝑆𝑥 ∈ (𝐹 “ {(𝐹𝑥)})))
43ad2antll 729 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → (𝑥𝑆𝑥 ∈ (𝐹 “ {(𝐹𝑥)})))
52, 4mpbird 257 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑥𝑆)
6 simprr 772 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑆 = (𝐹 “ {(𝐹𝑥)}))
75, 6jca 511 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → (𝑥𝑆𝑆 = (𝐹 “ {(𝐹𝑥)})))
87ex 412 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)})) → (𝑥𝑆𝑆 = (𝐹 “ {(𝐹𝑥)}))))
98reximdv2 3163 . 2 (𝐹 Fn 𝐴 → (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)})))
10 setpreimafvex.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1110elsetpreimafv 47377 . 2 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
129, 11impel 505 1 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2713  wrex 3069  {csn 4625  ccnv 5683  cima 5687   Fn wfn 6555  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568
This theorem is referenced by:  imaelsetpreimafv  47387
  Copyright terms: Public domain W3C validator