Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelsetpreimafv Structured version   Visualization version   GIF version

Theorem fvelsetpreimafv 44727
Description: There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
fvelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem fvelsetpreimafv
StepHypRef Expression
1 preimafvsnel 44719 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
21adantrr 713 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
3 eleq2 2827 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑥𝑆𝑥 ∈ (𝐹 “ {(𝐹𝑥)})))
43ad2antll 725 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → (𝑥𝑆𝑥 ∈ (𝐹 “ {(𝐹𝑥)})))
52, 4mpbird 256 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑥𝑆)
6 simprr 769 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑆 = (𝐹 “ {(𝐹𝑥)}))
75, 6jca 511 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → (𝑥𝑆𝑆 = (𝐹 “ {(𝐹𝑥)})))
87ex 412 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)})) → (𝑥𝑆𝑆 = (𝐹 “ {(𝐹𝑥)}))))
98reximdv2 3198 . 2 (𝐹 Fn 𝐴 → (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)})))
10 setpreimafvex.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1110elsetpreimafv 44725 . 2 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
129, 11impel 505 1 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  {csn 4558  ccnv 5579  cima 5583   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  imaelsetpreimafv  44735
  Copyright terms: Public domain W3C validator