Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelsetpreimafv Structured version   Visualization version   GIF version

Theorem fvelsetpreimafv 47426
Description: There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
fvelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem fvelsetpreimafv
StepHypRef Expression
1 preimafvsnel 47418 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
21adantrr 717 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
3 eleq2 2820 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑥𝑆𝑥 ∈ (𝐹 “ {(𝐹𝑥)})))
43ad2antll 729 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → (𝑥𝑆𝑥 ∈ (𝐹 “ {(𝐹𝑥)})))
52, 4mpbird 257 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑥𝑆)
6 simprr 772 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑆 = (𝐹 “ {(𝐹𝑥)}))
75, 6jca 511 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → (𝑥𝑆𝑆 = (𝐹 “ {(𝐹𝑥)})))
87ex 412 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)})) → (𝑥𝑆𝑆 = (𝐹 “ {(𝐹𝑥)}))))
98reximdv2 3142 . 2 (𝐹 Fn 𝐴 → (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)})))
10 setpreimafvex.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1110elsetpreimafv 47424 . 2 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
129, 11impel 505 1 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {csn 4573  ccnv 5613  cima 5617   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  imaelsetpreimafv  47434
  Copyright terms: Public domain W3C validator