Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelsetpreimafv Structured version   Visualization version   GIF version

Theorem fvelsetpreimafv 47319
Description: There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
fvelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem fvelsetpreimafv
StepHypRef Expression
1 preimafvsnel 47311 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
21adantrr 717 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
3 eleq2 2822 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑥𝑆𝑥 ∈ (𝐹 “ {(𝐹𝑥)})))
43ad2antll 729 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → (𝑥𝑆𝑥 ∈ (𝐹 “ {(𝐹𝑥)})))
52, 4mpbird 257 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑥𝑆)
6 simprr 772 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → 𝑆 = (𝐹 “ {(𝐹𝑥)}))
75, 6jca 511 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)}))) → (𝑥𝑆𝑆 = (𝐹 “ {(𝐹𝑥)})))
87ex 412 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑆 = (𝐹 “ {(𝐹𝑥)})) → (𝑥𝑆𝑆 = (𝐹 “ {(𝐹𝑥)}))))
98reximdv2 3148 . 2 (𝐹 Fn 𝐴 → (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)})))
10 setpreimafvex.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1110elsetpreimafv 47317 . 2 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
129, 11impel 505 1 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  {csn 4599  ccnv 5650  cima 5654   Fn wfn 6522  cfv 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-fv 6535
This theorem is referenced by:  imaelsetpreimafv  47327
  Copyright terms: Public domain W3C validator