Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvbi Structured version   Visualization version   GIF version

Theorem elsetpreimafvbi 47389
Description: An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvbi ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafvbi
StepHypRef Expression
1 fniniseg 7032 . . . . . 6 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑥))))
2 fniniseg 7032 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥))))
3 eqeq2 2741 . . . . . . . . . . 11 ((𝐹𝑥) = (𝐹𝑋) → ((𝐹𝑌) = (𝐹𝑥) ↔ (𝐹𝑌) = (𝐹𝑋)))
43anbi2d 630 . . . . . . . . . 10 ((𝐹𝑥) = (𝐹𝑋) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥)) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
54eqcoms 2737 . . . . . . . . 9 ((𝐹𝑋) = (𝐹𝑥) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥)) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
62, 5sylan9bb 509 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) = (𝐹𝑥)) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
76ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → ((𝐹𝑋) = (𝐹𝑥) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
87adantld 490 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑥)) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
91, 8sylbid 240 . . . . 5 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
10 eleq2 2817 . . . . . 6 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑋𝑆𝑋 ∈ (𝐹 “ {(𝐹𝑥)})))
11 eleq2 2817 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑌𝑆𝑌 ∈ (𝐹 “ {(𝐹𝑥)})))
1211bibi1d 343 . . . . . 6 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → ((𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))) ↔ (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
1310, 12imbi12d 344 . . . . 5 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → ((𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))) ↔ (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
149, 13imbitrrid 246 . . . 4 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
1514rexlimivw 3130 . . 3 (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
16 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1716elsetpreimafv 47383 . . 3 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
1815, 17syl11 33 . 2 (𝐹 Fn 𝐴 → (𝑆𝑃 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
19183imp 1110 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {csn 4589  ccnv 5637  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  elsetpreimafveqfv  47390  eqfvelsetpreimafv  47391  elsetpreimafvrab  47392  imaelsetpreimafv  47393
  Copyright terms: Public domain W3C validator