Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvbi Structured version   Visualization version   GIF version

Theorem elsetpreimafvbi 43600
Description: An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvbi ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafvbi
StepHypRef Expression
1 fniniseg 6830 . . . . . 6 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑥))))
2 fniniseg 6830 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥))))
3 eqeq2 2833 . . . . . . . . . . 11 ((𝐹𝑥) = (𝐹𝑋) → ((𝐹𝑌) = (𝐹𝑥) ↔ (𝐹𝑌) = (𝐹𝑋)))
43anbi2d 630 . . . . . . . . . 10 ((𝐹𝑥) = (𝐹𝑋) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥)) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
54eqcoms 2829 . . . . . . . . 9 ((𝐹𝑋) = (𝐹𝑥) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥)) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
62, 5sylan9bb 512 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) = (𝐹𝑥)) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
76ex 415 . . . . . . 7 (𝐹 Fn 𝐴 → ((𝐹𝑋) = (𝐹𝑥) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
87adantld 493 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑥)) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
91, 8sylbid 242 . . . . 5 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
10 eleq2 2901 . . . . . 6 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑋𝑆𝑋 ∈ (𝐹 “ {(𝐹𝑥)})))
11 eleq2 2901 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑌𝑆𝑌 ∈ (𝐹 “ {(𝐹𝑥)})))
1211bibi1d 346 . . . . . 6 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → ((𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))) ↔ (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
1310, 12imbi12d 347 . . . . 5 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → ((𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))) ↔ (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
149, 13syl5ibr 248 . . . 4 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
1514rexlimivw 3282 . . 3 (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
16 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1716elsetpreimafv 43594 . . 3 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
1815, 17syl11 33 . 2 (𝐹 Fn 𝐴 → (𝑆𝑃 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
19183imp 1107 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  {csn 4567  ccnv 5554  cima 5558   Fn wfn 6350  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363
This theorem is referenced by:  elsetpreimafveqfv  43601  eqfvelsetpreimafv  43602  elsetpreimafvrab  43603  imaelsetpreimafv  43604
  Copyright terms: Public domain W3C validator