Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvbi Structured version   Visualization version   GIF version

Theorem elsetpreimafvbi 44731
Description: An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvbi ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafvbi
StepHypRef Expression
1 fniniseg 6919 . . . . . 6 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑥))))
2 fniniseg 6919 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥))))
3 eqeq2 2750 . . . . . . . . . . 11 ((𝐹𝑥) = (𝐹𝑋) → ((𝐹𝑌) = (𝐹𝑥) ↔ (𝐹𝑌) = (𝐹𝑋)))
43anbi2d 628 . . . . . . . . . 10 ((𝐹𝑥) = (𝐹𝑋) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥)) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
54eqcoms 2746 . . . . . . . . 9 ((𝐹𝑋) = (𝐹𝑥) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥)) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
62, 5sylan9bb 509 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) = (𝐹𝑥)) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
76ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → ((𝐹𝑋) = (𝐹𝑥) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
87adantld 490 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑥)) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
91, 8sylbid 239 . . . . 5 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
10 eleq2 2827 . . . . . 6 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑋𝑆𝑋 ∈ (𝐹 “ {(𝐹𝑥)})))
11 eleq2 2827 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑌𝑆𝑌 ∈ (𝐹 “ {(𝐹𝑥)})))
1211bibi1d 343 . . . . . 6 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → ((𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))) ↔ (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
1310, 12imbi12d 344 . . . . 5 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → ((𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))) ↔ (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
149, 13syl5ibr 245 . . . 4 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
1514rexlimivw 3210 . . 3 (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
16 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1716elsetpreimafv 44725 . . 3 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
1815, 17syl11 33 . 2 (𝐹 Fn 𝐴 → (𝑆𝑃 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
19183imp 1109 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  {csn 4558  ccnv 5579  cima 5583   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  elsetpreimafveqfv  44732  eqfvelsetpreimafv  44733  elsetpreimafvrab  44734  imaelsetpreimafv  44735
  Copyright terms: Public domain W3C validator