Proof of Theorem elsetpreimafvbi
| Step | Hyp | Ref
| Expression |
| 1 | | fniniseg 7079 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = (𝐹‘𝑥)))) |
| 2 | | fniniseg 7079 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐴 → (𝑌 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑥)))) |
| 3 | | eqeq2 2748 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑥) = (𝐹‘𝑋) → ((𝐹‘𝑌) = (𝐹‘𝑥) ↔ (𝐹‘𝑌) = (𝐹‘𝑋))) |
| 4 | 3 | anbi2d 630 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) = (𝐹‘𝑋) → ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑥)) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) |
| 5 | 4 | eqcoms 2744 |
. . . . . . . . 9
⊢ ((𝐹‘𝑋) = (𝐹‘𝑥) → ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑥)) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) |
| 6 | 2, 5 | sylan9bb 509 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ (𝐹‘𝑋) = (𝐹‘𝑥)) → (𝑌 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) |
| 7 | 6 | ex 412 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → ((𝐹‘𝑋) = (𝐹‘𝑥) → (𝑌 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋))))) |
| 8 | 7 | adantld 490 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = (𝐹‘𝑥)) → (𝑌 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋))))) |
| 9 | 1, 8 | sylbid 240 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑌 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋))))) |
| 10 | | eleq2 2829 |
. . . . . 6
⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 11 | | eleq2 2829 |
. . . . . . 7
⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑌 ∈ 𝑆 ↔ 𝑌 ∈ (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 12 | 11 | bibi1d 343 |
. . . . . 6
⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → ((𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋))) ↔ (𝑌 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋))))) |
| 13 | 10, 12 | imbi12d 344 |
. . . . 5
⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → ((𝑋 ∈ 𝑆 → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) ↔ (𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) → (𝑌 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))))) |
| 14 | 9, 13 | imbitrrid 246 |
. . . 4
⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → (𝑋 ∈ 𝑆 → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))))) |
| 15 | 14 | rexlimivw 3150 |
. . 3
⊢
(∃𝑥 ∈
𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}) → (𝐹 Fn 𝐴 → (𝑋 ∈ 𝑆 → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))))) |
| 16 | | setpreimafvex.p |
. . . 4
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| 17 | 16 | elsetpreimafv 47377 |
. . 3
⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 18 | 15, 17 | syl11 33 |
. 2
⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → (𝑋 ∈ 𝑆 → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))))) |
| 19 | 18 | 3imp 1110 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) |