| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafvb | Structured version Visualization version GIF version | ||
| Description: The characterization of an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| elsetpreimafvb | ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑆 ∈ 𝑃 ↔ 𝑆 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}) |
| 3 | eqeq1 2733 | . . . 4 ⊢ (𝑧 = 𝑆 → (𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) | |
| 4 | 3 | rexbidv 3157 | . . 3 ⊢ (𝑧 = 𝑆 → (∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 5 | 4 | elabg 3643 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 6 | 2, 5 | bitrid 283 | 1 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {csn 4589 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: elsetpreimafv 47383 preimafvelsetpreimafv 47386 0nelsetpreimafv 47388 |
| Copyright terms: Public domain | W3C validator |