Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nelsetpreimafv Structured version   Visualization version   GIF version

Theorem 0nelsetpreimafv 47264
Description: The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
0nelsetpreimafv (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem 0nelsetpreimafv
StepHypRef Expression
1 preimafvsnel 47253 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
2 n0i 4363 . . . . . 6 (𝑥 ∈ (𝐹 “ {(𝐹𝑥)}) → ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
31, 2syl 17 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
43ralrimiva 3152 . . . 4 (𝐹 Fn 𝐴 → ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
5 ralnex 3078 . . . . 5 (∀𝑥𝐴 ¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
6 eqcom 2747 . . . . . . 7 (∅ = (𝐹 “ {(𝐹𝑥)}) ↔ (𝐹 “ {(𝐹𝑥)}) = ∅)
76notbii 320 . . . . . 6 (¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
87ralbii 3099 . . . . 5 (∀𝑥𝐴 ¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
95, 8bitr3i 277 . . . 4 (¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
104, 9sylibr 234 . . 3 (𝐹 Fn 𝐴 → ¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
11 0ex 5325 . . . 4 ∅ ∈ V
12 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1312elsetpreimafvb 47258 . . . 4 (∅ ∈ V → (∅ ∈ 𝑃 ↔ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)})))
1411, 13ax-mp 5 . . 3 (∅ ∈ 𝑃 ↔ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
1510, 14sylnibr 329 . 2 (𝐹 Fn 𝐴 → ¬ ∅ ∈ 𝑃)
16 df-nel 3053 . 2 (∅ ∉ 𝑃 ↔ ¬ ∅ ∈ 𝑃)
1715, 16sylibr 234 1 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wnel 3052  wral 3067  wrex 3076  Vcvv 3488  c0 4352  {csn 4648  ccnv 5699  cima 5703   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  uniimaelsetpreimafv  47270  imasetpreimafvbijlemfv1  47277
  Copyright terms: Public domain W3C validator