| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0nelsetpreimafv | Structured version Visualization version GIF version | ||
| Description: The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| 0nelsetpreimafv | ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimafvsnel 47360 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) | |
| 2 | n0i 4320 | . . . . . 6 ⊢ (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) → ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
| 4 | 3 | ralrimiva 3133 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
| 5 | ralnex 3063 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) | |
| 6 | eqcom 2743 | . . . . . . 7 ⊢ (∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) | |
| 7 | 6 | notbii 320 | . . . . . 6 ⊢ (¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
| 8 | 7 | ralbii 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
| 9 | 5, 8 | bitr3i 277 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
| 10 | 4, 9 | sylibr 234 | . . 3 ⊢ (𝐹 Fn 𝐴 → ¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 11 | 0ex 5282 | . . . 4 ⊢ ∅ ∈ V | |
| 12 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 13 | 12 | elsetpreimafvb 47365 | . . . 4 ⊢ (∅ ∈ V → (∅ ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 14 | 11, 13 | ax-mp 5 | . . 3 ⊢ (∅ ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 15 | 10, 14 | sylnibr 329 | . 2 ⊢ (𝐹 Fn 𝐴 → ¬ ∅ ∈ 𝑃) |
| 16 | df-nel 3038 | . 2 ⊢ (∅ ∉ 𝑃 ↔ ¬ ∅ ∈ 𝑃) | |
| 17 | 15, 16 | sylibr 234 | 1 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∉ wnel 3037 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∅c0 4313 {csn 4606 ◡ccnv 5658 “ cima 5662 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: uniimaelsetpreimafv 47377 imasetpreimafvbijlemfv1 47384 |
| Copyright terms: Public domain | W3C validator |