Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0nelsetpreimafv | Structured version Visualization version GIF version |
Description: The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
0nelsetpreimafv | ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimafvsnel 44719 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) | |
2 | n0i 4264 | . . . . . 6 ⊢ (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) → ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
4 | 3 | ralrimiva 3107 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
5 | ralnex 3163 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) | |
6 | eqcom 2745 | . . . . . . 7 ⊢ (∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) | |
7 | 6 | notbii 319 | . . . . . 6 ⊢ (¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
8 | 7 | ralbii 3090 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
9 | 5, 8 | bitr3i 276 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
10 | 4, 9 | sylibr 233 | . . 3 ⊢ (𝐹 Fn 𝐴 → ¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) |
11 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
12 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
13 | 12 | elsetpreimafvb 44724 | . . . 4 ⊢ (∅ ∈ V → (∅ ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)}))) |
14 | 11, 13 | ax-mp 5 | . . 3 ⊢ (∅ ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) |
15 | 10, 14 | sylnibr 328 | . 2 ⊢ (𝐹 Fn 𝐴 → ¬ ∅ ∈ 𝑃) |
16 | df-nel 3049 | . 2 ⊢ (∅ ∉ 𝑃 ↔ ¬ ∅ ∈ 𝑃) | |
17 | 15, 16 | sylibr 233 | 1 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∉ wnel 3048 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∅c0 4253 {csn 4558 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: uniimaelsetpreimafv 44736 imasetpreimafvbijlemfv1 44743 |
Copyright terms: Public domain | W3C validator |