![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0nelsetpreimafv | Structured version Visualization version GIF version |
Description: The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
0nelsetpreimafv | ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimafvsnel 45724 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)})) | |
2 | n0i 4313 | . . . . . 6 ⊢ (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑥)}) → ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
4 | 3 | ralrimiva 3145 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
5 | ralnex 3071 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) | |
6 | eqcom 2738 | . . . . . . 7 ⊢ (∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) | |
7 | 6 | notbii 319 | . . . . . 6 ⊢ (¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
8 | 7 | ralbii 3092 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
9 | 5, 8 | bitr3i 276 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∀𝑥 ∈ 𝐴 ¬ (◡𝐹 “ {(𝐹‘𝑥)}) = ∅) |
10 | 4, 9 | sylibr 233 | . . 3 ⊢ (𝐹 Fn 𝐴 → ¬ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) |
11 | 0ex 5284 | . . . 4 ⊢ ∅ ∈ V | |
12 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
13 | 12 | elsetpreimafvb 45729 | . . . 4 ⊢ (∅ ∈ V → (∅ ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)}))) |
14 | 11, 13 | ax-mp 5 | . . 3 ⊢ (∅ ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 ∅ = (◡𝐹 “ {(𝐹‘𝑥)})) |
15 | 10, 14 | sylnibr 328 | . 2 ⊢ (𝐹 Fn 𝐴 → ¬ ∅ ∈ 𝑃) |
16 | df-nel 3046 | . 2 ⊢ (∅ ∉ 𝑃 ↔ ¬ ∅ ∈ 𝑃) | |
17 | 15, 16 | sylibr 233 | 1 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2708 ∉ wnel 3045 ∀wral 3060 ∃wrex 3069 Vcvv 3459 ∅c0 4302 {csn 4606 ◡ccnv 5652 “ cima 5656 Fn wfn 6511 ‘cfv 6516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2702 ax-sep 5276 ax-nul 5283 ax-pr 5404 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3419 df-v 3461 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-nul 4303 df-if 4507 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-br 5126 df-opab 5188 df-id 5551 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-iota 6468 df-fun 6518 df-fn 6519 df-fv 6524 |
This theorem is referenced by: uniimaelsetpreimafv 45741 imasetpreimafvbijlemfv1 45748 |
Copyright terms: Public domain | W3C validator |