Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nelsetpreimafv Structured version   Visualization version   GIF version

Theorem 0nelsetpreimafv 46509
Description: The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
0nelsetpreimafv (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem 0nelsetpreimafv
StepHypRef Expression
1 preimafvsnel 46498 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
2 n0i 4325 . . . . . 6 (𝑥 ∈ (𝐹 “ {(𝐹𝑥)}) → ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
31, 2syl 17 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
43ralrimiva 3138 . . . 4 (𝐹 Fn 𝐴 → ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
5 ralnex 3064 . . . . 5 (∀𝑥𝐴 ¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
6 eqcom 2731 . . . . . . 7 (∅ = (𝐹 “ {(𝐹𝑥)}) ↔ (𝐹 “ {(𝐹𝑥)}) = ∅)
76notbii 320 . . . . . 6 (¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
87ralbii 3085 . . . . 5 (∀𝑥𝐴 ¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
95, 8bitr3i 277 . . . 4 (¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
104, 9sylibr 233 . . 3 (𝐹 Fn 𝐴 → ¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
11 0ex 5297 . . . 4 ∅ ∈ V
12 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1312elsetpreimafvb 46503 . . . 4 (∅ ∈ V → (∅ ∈ 𝑃 ↔ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)})))
1411, 13ax-mp 5 . . 3 (∅ ∈ 𝑃 ↔ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
1510, 14sylnibr 329 . 2 (𝐹 Fn 𝐴 → ¬ ∅ ∈ 𝑃)
16 df-nel 3039 . 2 (∅ ∉ 𝑃 ↔ ¬ ∅ ∈ 𝑃)
1715, 16sylibr 233 1 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {cab 2701  wnel 3038  wral 3053  wrex 3062  Vcvv 3466  c0 4314  {csn 4620  ccnv 5665  cima 5669   Fn wfn 6528  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541
This theorem is referenced by:  uniimaelsetpreimafv  46515  imasetpreimafvbijlemfv1  46522
  Copyright terms: Public domain W3C validator