Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nelsetpreimafv Structured version   Visualization version   GIF version

Theorem 0nelsetpreimafv 47388
Description: The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
0nelsetpreimafv (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem 0nelsetpreimafv
StepHypRef Expression
1 preimafvsnel 47377 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → 𝑥 ∈ (𝐹 “ {(𝐹𝑥)}))
2 n0i 4303 . . . . . 6 (𝑥 ∈ (𝐹 “ {(𝐹𝑥)}) → ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
31, 2syl 17 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
43ralrimiva 3125 . . . 4 (𝐹 Fn 𝐴 → ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
5 ralnex 3055 . . . . 5 (∀𝑥𝐴 ¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
6 eqcom 2736 . . . . . . 7 (∅ = (𝐹 “ {(𝐹𝑥)}) ↔ (𝐹 “ {(𝐹𝑥)}) = ∅)
76notbii 320 . . . . . 6 (¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
87ralbii 3075 . . . . 5 (∀𝑥𝐴 ¬ ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
95, 8bitr3i 277 . . . 4 (¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}) ↔ ∀𝑥𝐴 ¬ (𝐹 “ {(𝐹𝑥)}) = ∅)
104, 9sylibr 234 . . 3 (𝐹 Fn 𝐴 → ¬ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
11 0ex 5262 . . . 4 ∅ ∈ V
12 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1312elsetpreimafvb 47382 . . . 4 (∅ ∈ V → (∅ ∈ 𝑃 ↔ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)})))
1411, 13ax-mp 5 . . 3 (∅ ∈ 𝑃 ↔ ∃𝑥𝐴 ∅ = (𝐹 “ {(𝐹𝑥)}))
1510, 14sylnibr 329 . 2 (𝐹 Fn 𝐴 → ¬ ∅ ∈ 𝑃)
16 df-nel 3030 . 2 (∅ ∉ 𝑃 ↔ ¬ ∅ ∈ 𝑃)
1715, 16sylibr 234 1 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wnel 3029  wral 3044  wrex 3053  Vcvv 3447  c0 4296  {csn 4589  ccnv 5637  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  uniimaelsetpreimafv  47394  imasetpreimafvbijlemfv1  47401
  Copyright terms: Public domain W3C validator